3,618 research outputs found

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    AI-based hybrid optimisation of multi-megawatt scale permanent magnet synchronous generators for offshore wind energy capture

    Get PDF
    The finite nature of earth’s natural resources has become a post-industrial reality. Despite their alarming depletion, fossil fuels still dominated the global final energy landscape. Technological advances and rapid deployment of various renewable energy technologies have demonstrated their potential at reducing the worlds dependency on fossil fuels and their negative impacts. Presently, wind energy is the most cost-effective means of renewable energy conversion in the developed world and has currently has a price point that is in direct competition with fossil fuel. Coupled with the low price, the adoption of wind power has seen capacity increases in excess of 650% over the last ten years. Permanent Magnet Synchronous Generators (PMSGs) have become prominent in large wind energy system applications. The Radial Flux machine topology has become particularly attractive. In order to improve the competitiveness of large wind energy systems, the main focal point of current research is toward reducing the Levelised Cost of Energy (LCOE) of the systems. A proven method of reducing the LCOE of wind power generation is by upscaling RF-PMSGs to the multi mega-watt (MW) range. For the much wider adoption of wind power generation, the cost of energy (price/MWh) needs to be driven down further, by the development of more efficient and cost-effective ways to harvest the vast amounts of energy. The main objective of this dissertation is the drive-train selection, detailed design, sizing and optimisation of a 10.8 MW permanent magnet radial flux synchronous generator (RF-PMSG) to be used in the next generation of offshore wind farms. From an analytical viewpoint, the results suggested the use of a medium speed RF-PMSG utilizing a single-stage geared drivetrain, together with a MV voltage rating (3.3kV) for the 10.8 MW RF-PMSG designed in the thesis. Finally, this dissertation proposes a promising hybrid, analytical-numerical optimisation of a 10.8 MW RF-PMSG to be used for offshore Wind Energy Conversion. The hybrid optimisation utilises a two-stage optimisation strategy that incorporates both an analytical and a numerical (FEA) optimisation; using the DE algorithm and the Taguchi method respectively. Although the permanent magnet losses are neglected in the analytical loss calculations, they are included in the numerical FE portion of the hybrid optimisation. The initial stage (STAGE I) of the hybrid optimisation utilised the DE algorithm. The objective function was set to reduce the initial cost (!"#"%&) of the RF-PMSG, by reducing the active material mass ('()"*+) in the generator, i.e. NdFeB PM mass (',-), copper mass (').), and active steel in the stator lamination and rotor core ('/0%&1++&), while maintaining a pmsg efficiency (23456 ≥ 97%). The initial stage saw a reduction in initial cost by 25.5%, while maintaining an efficiency of 23456 = 97.8%. The final stage (STAGE II) of the hybrid optimisation utilising the Taguchi method, to make improvements on the performance of the machine, by optimising the Torque and back EMF characteristics while further reducing the NdFeB PM mass. The Magnet Fill Factor (APM), the Slot opening (bs0), the thickness of the permanent magnet poles (ℎ34) and the equivalent length of the air gap (?6) were used as optimisation variables. The final stage saw a decrease in cogging torque (@)06) by 53.4%, an increase in average torque (@%*) by 1.1%, a reduction in the total harmonic distortion of the back EMF (@AB) by 8.0%, a reduction in the required mass of the NdFeB permanent magnet material by 12.43%, while maintaining a torque ripple (@C"3) < 10%. The RF-PMSG characteristics optimised using the hybrid analytical-numerical optimisation were hypothesised to contribute in a reduction of the LCOE of offshore wind energy both in terms of Operational expenditure (OPEX) and Capital expenditure (CAPEX)

    Computationalcost Reduction of Robust Controllers Foractive Magnetic Bearing Systems

    Get PDF
    This work developed strategies for reducing the computational complexity of implementing robust controllers for active magnetic bearing (AMB) systems and investigated the use of a novel add-on controller for gyroscopic effect compensation to improve achievable performance with robust controllers. AMB systems are multi-input multi-output (MIMO) systems with many interacting mechanisms that needs to fulfill conflicting performance criteria. That is why robust control techniques are a perfect application for AMB systems as they provide systematic methods to address both robustness and performance objectives. However, robust control techniques generally result in high order controllers that require high-end control hardware for implementation. Such controllers are not desirable by industrial AMB vendors since their hardware is based on embedded systems with limited bandwidths. That is why the computational cost is a major obstacle towards industry adaptation of robust controllers. Two novel strategies are developed to reduce the computational complexity of singlerate robust controllers while preserving robust performance. The first strategy identifies a dual-rate configuration of the controller for implementation. The selection of the dualrate configuration uses the worst-case plant analysis and a novel approach that identifies the largest tolerable perturbations to the controller. The second strategy aims to redesign iv the controller by identifying and removing negligible channels in the context of robust performance via the largest tolerable perturbations to the controller. The developed methods are demonstrated both in simulation and experiment using three different AMB systems, where significant computational savings are achieved without degrading the performance. To improve the achievable performance with robust controllers, a novel add-on controller is developed to compensate the gyroscopic effects in flexible rotor-AMB systems via modal feedback control. The compensation allows for relaxing the robustness requirements in the control problem formulation, potentially enabling better performance. The effectiveness of the developed add-on controller is demonstrated experimentally on two AMB systems with different rotor configurations. The effects of the presence of the add-on controller on the performance controller design is investigated for one of the AMB systems. Slight performance improvements are observed at the cost of increased power consumption and increased computational complexity

    Strategic Technology Maturation and Insertion (STMI): a requirements guided, technology development optimization process

    Get PDF
    This research presents a Decision Support System (DSS) process solution to a problem faced by Program Managers (PMs) early in a system lifecycle, when potential technologies are evaluated for placement within a system design. The proposed process for evaluation and selection of technologies incorporates computer based Operational Research techniques which automate and optimize key portions of the decision process. This computerized process allows the PM to rapidly form the basis of a Strategic Technology Plan (STP) designed to manage, mature and insert the technologies into the system design baseline and identify potential follow-on incremental system improvements. This process is designated Strategic Technology Maturation and Insertion (STMI). Traditionally, to build this STP, the PM must juggle system performance, schedule, and cost issues and strike a balance of new and old technologies that can be fielded to meet the requirements of the customer. To complicate this juggling skill, the PM is typically confronted with a short time frame to evaluate hundreds of potential technology solutions with thousands of potential interacting combinations within the system design. Picking the best combination of new and established technologies, plus selecting the critical technologies needing maturation investment is a significant challenge. These early lifecycle decisions drive the entire system design, cost and schedule well into production The STMI process explores a formalized and repeatable DSS to allow PMs to systematically tackle the problems with technology evaluation, selection and maturation. It gives PMs a tool to compare and evaluate the entire design space of candidate technology performance, incorporate lifecycle costs as an optimizer for a best value system design, and generate input for a strategic plan to mature critical technologies. Four enabling concepts are described and brought together to form the basis of STMI: Requirements Engineering (RE), Value Engineering (VE), system optimization and Strategic Technology Planning (STP). STMI is then executed in three distinct stages: Pre-process preparation, process operation and optimization, and post-process analysis. A demonstration case study prepares and implements the proposed STMI process in a multi-system (macro) concept down select and a specific (micro) single system design that ties into the macro design level decision

    Finding Multiple Roots of Nonlinear Equation Systems via a Repulsion-Based Adaptive Differential Evolution

    Get PDF
    Finding multiple roots of nonlinear equation systems (NESs) in a single run is one of the most important challenges in numerical computation. We tackle this challenging task by combining the strengths of the repulsion technique, diversity preservation mechanism, and adaptive parameter control. First, the repulsion technique motivates the population to find new roots by repulsing the regions surrounding the previously found roots. However, to find as many roots as possible, algorithm designers need to address a key issue: how to maintain the diversity of the population. To this end, the diversity preservation mechanism is integrated into our approach, which consists of the neighborhood mutation and the crowding selection. In addition, we further improve the performance by incorporating the adaptive parameter control. The purpose is to enhance the search ability and remedy the trial-and-error tuning of the parameters of differential evolution (DE) for different problems. By assembling the above three aspects together, we propose a repulsion-based adaptive DE, called RADE, for finding multiple roots of NESs in a single run. To evaluate the performance of RADE, 30 NESs with diverse features are chosen from the literature as the test suite. Experimental results reveal that RADE is able to find multiple roots simultaneously in a single run on all the test problems. Moreover, RADE is capable of providing better results than the compared methods in terms of both root rate and success rate

    A cooling system for s.m.a. (shape memory alloy)based on the use of peltier cells

    Get PDF
    The aim of this thesis has been the study and the implementation of an innovative cooling system for S.M.A. (Shape Memory Alloy) material by using a Peltier cell. This system has demonstrated a consistent cooling time reduction during the application and so that the solution adopted has confirmed that it can be used for a better operability of the S.M.A. material during the cooling phase. After an accurate selection of possible cooling system to be adopted on these materials the better choice in terms of efficiency and energy consumption reduction has converged on Peltier cell design development. In this context for our research three investigation have been conducted. The first one has concerned an analytic investigation in order to understand the phenomenology and the terms involved during the heat exchange. After this study a numerical investigation through a Finite Element approach by commercial software has been carried out. Also an experimental investigation has been conducted, at the CIRA Smart Structure Laboratory, in order to verify the results obtained by the numerical prediction. The set-up with the Peltier cell used as heater and cooler of the S.M.A. has confirmed the soundness of the solution adopted. Finally, a correlation between numerical and experimental results have been presented demonstrating the validity of the obtained results through the developed investigations. This system, composed of Peltier cell has confirmed also an energy consumption reduction because the cell has been used for heating and cooling phase without additional system as resistive system (Joule effect). This project shall be also industrial involvement in a new cost cut down point of vie

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 1

    Get PDF
    The proceedings of the workshop are presented. Some areas of discussion are as follows: modeling, systems identification, and control of flexible aircraft, spacecraft, and robotic systems

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore