14,422 research outputs found

    Greening information management: final report

    Get PDF
    As the recent JISC report on ‘the ‘greening’ of ICT in education [1] highlights, the increasing reliance on ICT to underpin the business functions of higher education institutions has a heavy environmental impact, due mainly to the consumption of electricity to run computers and to cool data centres. While work is already under way to investigate how more energy efficient ICT can be introduced, to date there has been much less focus on the potential environmental benefits to be accrued from reducing the demand ‘at source’ through better data and information management. JISC thus commissioned the University of Strathclyde to undertake a study to gather evidence that establishes the efficacy of using information management options as components of Green ICT strategies within UK Higher Education environments, and to highlight existing practices which have the potential for wider replication

    A survey of energy saving techniques for mobile computers

    Get PDF
    Portable products such as pagers, cordless and digital cellular telephones, personal audio equipment, and laptop computers are increasingly being used. Because these applications are battery powered, reducing power consumption is vital. In this report we first give a survey of techniques for accomplishing energy reduction on the hardware level such as: low voltage components, use of sleep or idle modes, dynamic control of the processor clock frequency, clocking regions, and disabling unused peripherals. System- design techniques include minimizing external accesses, minimizing logic state transitions, and system partitioning using application-specific coprocessors. Then we review energy reduction techniques in the design of operating systems, including communication protocols, caching, scheduling and QoS management. Finally, we give an overview of policies to optimize the code of the application for energy consumption and make it aware of power management functions. Applications play a critical role in the user's experience of a power-managed system. Therefore, the application and the operating system must allow a user to control the power management. Remarkably, it appears that some energy preserving techniques not only lead to a reduced energy consumption, but also to more performance

    Dynamic Physiological Partitioning on a Shared-nothing Database Cluster

    Full text link
    Traditional DBMS servers are usually over-provisioned for most of their daily workloads and, because they do not show good-enough energy proportionality, waste a lot of energy while underutilized. A cluster of small (wimpy) servers, where its size can be dynamically adjusted to the current workload, offers better energy characteristics for these workloads. Yet, data migration, necessary to balance utilization among the nodes, is a non-trivial and time-consuming task that may consume the energy saved. For this reason, a sophisticated and easy to adjust partitioning scheme fostering dynamic reorganization is needed. In this paper, we adapt a technique originally created for SMP systems, called physiological partitioning, to distribute data among nodes, that allows to easily repartition data without interrupting transactions. We dynamically partition DB tables based on the nodes' utilization and given energy constraints and compare our approach with physical partitioning and logical partitioning methods. To quantify possible energy saving and its conceivable drawback on query runtimes, we evaluate our implementation on an experimental cluster and compare the results w.r.t. performance and energy consumption. Depending on the workload, we can substantially save energy without sacrificing too much performance
    • 

    corecore