392 research outputs found

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    Energy Efficient Routing Protocols and algorithms for Wireless Sensor Networks a A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are an emerging technology for monitoring physical world. The sensor nodes are capable of sensing various types of environmental conditions, have some processing capabilities and ability to communicate the sensed data through wireless communication. Routing algorithms for WSNs are responsible for selecting and maintaining the routes in the network and ensure reliable and effective communication in limited periods. The energy constraint of WSNs make energy saving become the most important objective of various routing algorithms. In this paper, a survey of routing protocols and algorithms used in WSNs is presented with energy efficiency as the main goal

    The wireless sensor network and local computational unit in the neighbourhood area network of the Smart Grid

    Get PDF

    Improved energy aware cluster based data routing scheme for WSN

    Get PDF
    Wireless sensor network (WSN) consists of several tiny devices that are dispersed randomly for gathering network field. Clustering mechanism divides the WSN into different sub-regions called clusters. Individual cluster is consisting of cluster head (CH) and member nodes. The main research challenges behind clustering mechanism are to optimize network overheads with efficient data delivery. Sensor nodes are operated by batteries and practically it is not feasible to replace them during sensing the environment so energy should be effectively utilized among sensors for improving overall network performance. This research paper presents an improved energy aware cluster based data routing (i-ECBR) scheme, by dividing the network regions into uniform sized square partitions and localized CH election mechanism. In addition, consistent end-to-end data routing is performed for improving data dissemination. Simulation results illustrate that our proposed scheme outperforms than existing work in terms of different performance metrics

    Residual Energy Based Cluster-head Selection in WSNs for IoT Application

    Full text link
    Wireless sensor networks (WSN) groups specialized transducers that provide sensing services to Internet of Things (IoT) devices with limited energy and storage resources. Since replacement or recharging of batteries in sensor nodes is almost impossible, power consumption becomes one of the crucial design issues in WSN. Clustering algorithm plays an important role in power conservation for the energy constrained network. Choosing a cluster head can appropriately balance the load in the network thereby reducing energy consumption and enhancing lifetime. The paper focuses on an efficient cluster head election scheme that rotates the cluster head position among the nodes with higher energy level as compared to other. The algorithm considers initial energy, residual energy and an optimum value of cluster heads to elect the next group of cluster heads for the network that suits for IoT applications such as environmental monitoring, smart cities, and systems. Simulation analysis shows the modified version performs better than the LEACH protocol by enhancing the throughput by 60%, lifetime by 66%, and residual energy by 64%
    • …
    corecore