1,646 research outputs found

    NailO: Fingernails as an Input Surface

    Get PDF
    We present NailO, a nail-mounted gestural input surface. Using capacitive sensing on printed electrodes, the interface can distinguish on-nail finger swipe gestures with high accuracy (>92%). NailO works in real-time: we miniaturized the system to fit on the fingernail, while wirelessly transmitting the sensor data to a mobile phone or PC. NailO allows one-handed and always-available input, while being unobtrusive and discrete. Inspired by commercial nail stickers, the device blends into the user's body, is customizable, fashionable and even removable. We show example applications of using the device as a remote controller when hands are busy and using the system to increase the input space of mobile phones

    Functionality-power-packaging considerations in context aware wearable systems

    Get PDF
    Wearable computing places tighter constraints on architecture design than traditional mobile computing. The architecture is described in terms of miniaturization, power-awareness, global low-power design and suitability for an application. In this article we present a new methodology based on three different system properties. Functionality, power and electronic Packaging metrics are proposed and evaluated to study different trade offs. We analyze the trade offs in different context recognition scenarios. The proof of concept case study is analyzed by studying (a) interaction with household appliances by a wrist worn device (acceleration, light sensors) (b) studying walking behavior with acceleration sensors, (c) computational task and (d) gesture recognition in a wood-workshop using the combination of accelerometer and microphone sensors. After analyzing the case study, we highlight the size aspect by electronic packaging for a given functionality and present the miniaturization trends for ‘autonomous sensor button

    Wearable pressure sensing for intelligent gesture recognition

    Get PDF
    The development of wearable sensors has become a major area of interest due to their wide range of promising applications, including health monitoring, human motion detection, human-machine interfaces, electronic skin and soft robotics. Particularly, pressure sensors have attracted considerable attention in wearable applications. However, traditional pressure sensing systems are using rigid sensors to detect the human motions. Lightweight and flexible pressure sensors are required to improve the comfortability of devices. Furthermore, in comparison with conventional sensing techniques without smart algorithm, machine learning-assisted wearable systems are capable of intelligently analysing data for classification or prediction purposes, making the system ‘smarter’ for more demanding tasks. Therefore, combining flexible pressure sensors and machine learning is a promising method to deal with human motion recognition. This thesis focuses on fabricating flexible pressure sensors and developing wearable applications to recognize human gestures. Firstly, a comprehensive literature review was conducted, including current state-of-the-art on pressure sensing techniques and machine learning algorithms. Secondly, a piezoelectric smart wristband was developed to distinguish finger typing movements. Three machine learning algorithms, K Nearest Neighbour (KNN), Decision Tree (DT) and Support Vector Machine (SVM), were used to classify the movement of different fingers. The SVM algorithm outperformed other classifiers with an overall accuracy of 98.67% and 100% when processing raw data and extracted features. Thirdly, a piezoresistive wristband was fabricated based on a flake-sphere composite configuration in which reduced graphene oxide fragments are doped with polystyrene spheres to achieve both high sensitivity and flexibility. The flexible wristband measured the pressure distribution around the wrist for accurate and comfortable hand gesture classification. The intelligent wristband was able to classify 12 hand gestures with 96.33% accuracy for five participants using a machine learning algorithm. Moreover, for demonstrating the practical applications of the proposed method, a realtime system was developed to control a robotic hand according to the classification results. Finally, this thesis also demonstrates an intelligent piezoresistive sensor to recognize different throat movements during pronunciation. The piezoresistive sensor was fabricated using two PolyDimethylsiloxane (PDMS) layers that were coated with silver nanowires and reduced graphene oxide films, where the microstructures were fabricated by the polystyrene spheres between the layers. The highly sensitive sensor was able to distinguish throat vibrations from five different spoken words with an accuracy of 96% using the artificial neural network algorithm

    Titanic smart objects

    Get PDF
    • …
    corecore