52 research outputs found

    Energy-Efficiency in Optical Networks

    Get PDF

    ENERGY EFFICIENT WIRED NETWORKING

    Get PDF
    This research proposes a new dynamic energy management framework for a backbone Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) network. Maintaining the logical IP-layer topology is a key constraint of our architecture whilst saving energy by infrastructure sleeping and virtual router migration. The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based on people‟s activities, which is high in working hours and much lighter during hours associated with sleep. When the traffic demand is light, virtual router instances can be consolidated to a smaller set of physical platforms and the unneeded physical platforms can be put to sleep to save energy. As the traffic demand increases the sleeping physical platforms can be re-awoken in order to host virtual router instances and so maintain quality of service. Since the IP-layer topology remains unchanged throughout virtual router migration in our framework, there is no network disruption or discontinuities when the physical platforms enter or leave hibernation. However, this migration places extra demands on the optical layer as additional connections are needed to preserve the logical IP-layer topology whilst forwarding traffic to the new virtual router location. Consequently, dynamic optical connection management is needed for the new framework. Two important issues are considered in the framework, i.e. when to trigger the virtual router migration and where to move virtual router instances to? For the first issue, a reactive mechanism is used to trigger the virtual router migration by monitoring the network state. Then, a new evolutionary-based algorithm called VRM_MOEA is proposed for solving the destination physical platform selection problem, which chooses the appropriate location of virtual router instances as traffic demand varies. A novel hybrid simulation platform is developed to measure the performance of new framework, which is able to capture the functionality of the optical layer, the IP layer data-path and the IP/optical control plane. Simulation results show that the performance of network energy saving depends on many factors, such as network topology, quiet and busy thresholds, and traffic load; however, savings of around 30% are possible with typical medium-sized network topologies

    Energy Efficient Core Networks with Clouds

    Get PDF
    The popularity of cloud based applications stemming from the high volume of connected mobile devices has led to a huge increase in Internet traffic. In order to enable easy access to cloud applications, infrastructure providers have invested in geographically distributed databases and servers. However, intelligent and energy efficient high capacity transport networks with near ubiquitous connectivity are needed to adequately and sustainably serve these requirements. In this thesis, network virtualisation has been identified as a potential networking paradigm that can contribute to network agility and energy efficiency improvements in core networks with clouds. The work first introduces a new virtual network embedding core network architecture with clouds and a compute and bandwidth resource provisioning mechanism aimed at reducing power consumption in core networks and data centres. Further, quality of service measures in compute and bandwidth resource provisioning such as delay and customer location have been investigated and their impact on energy efficiency established. Data centre location optimisation for energy efficiency in virtual network embedding infrastructure has been investigated by developing a MILP model that selects optimal data centre locations in the core network. The work also introduces an optical OFDM based physical layer in virtual network embedding to optimise power consumption and optical spectrum utilization. In addition, virtual network embedding schemes aimed at profit maximization for cloud infrastructure providers as well greenhouse gas emission reduction in cloud infrastructure networks have been investigated. GreenTouch, a consortium of industrial and academic experts on energy efficiency in ICTs, has adopted the work in this thesis as one of the measures of improving energy efficiency in core networks

    Optical performance monitoring in optical packet-switched networks

    Full text link
    Para poder satisfacer la demanda de mayores anchos de banda y los requisitos de los nuevos servicios, se espera que se produzca una evolución de las redes ópticas hacia arquitecturas reconfigurables dinámicamente. Esta evolución subraya la importancia de ofrecer soluciones en la que la escalabilidad y la flexibilidad sean las principales directrices. De acuerdo a estas características, las redes ópticas de conmutación de paquetes (OPS) proporcionan altas capacidades de transmisión, eficiencia en ancho de banda y excelente flexibilidad, además de permitir el procesado de los paquetes directamente en la capa óptica. En este escenario, la solución all-optical label switching (AOLS) resuelve el cuello de botella impuesto por los nodos que realizan el procesado en el dominio eléctrico. A pesar de los progresos en el campo del networking óptico, las redes totalmente ópticas todavía se consideran una solución lejana . Por tanto, es importante desarrollar un escenario de migración factible y gradual desde las actuales redes ópticas basadas en la conmutación de circuitos (OCS). Uno de los objetivos de esta tesis se centra en la propuesta de escenarios de migración basados en redes híbridas que combinan diferentes tecnologías de conmutación. Además, se analiza la arquitectura de una red OPS compuesta de nodos que incorporan nuevas funcionalidades relacionadas con labores de monitorización y esquemas de recuperación. Las redes ópticas permiten mejorar la transparencia de la red, pero a costa de aumentar la complejidad de las tareas de gesión. En este escenario, la monitorización óptica de prestaciones (OPM) surge como una tecnología capaz de facilitar la administración de las redes OPS, en las que cada paquete sigue su propia ruta en la red y sufre un diferente nivel de degradación al llegar a su destino. Aquí reside la importancia de OPM para garantizar los requisitos de calidad de cada paquete.Vilar Mateo, R. (2010). Optical performance monitoring in optical packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8926Palanci

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    A green intelligent routing algorithm supporting flexible QoS for many-to-many multicast

    Get PDF
    The tremendous energy consumption attributed to the Information and Communication Technology (ICT) field has become a persistent concern during the last few years, attracting significant academic and industrial efforts. Networks have begun to be improved towards being “green”. Considering Quality of Service (QoS) and power consumption for green Internet, a Green Intelligent flexible QoS many-to-many Multicast routing algorithm (GIQM) is presented in this paper. In the proposed algorithm, a Rendezvous Point Confirming Stage (RPCS) is first carried out to obtain a rendezvous point and the candidate Many-to-many Multicast Sharing Tree (M2ST); then an Optimal Solution Identifying Stage (OSIS) is performed to generate a modified M2ST rooted at the rendezvous point, and an optimal M2ST is obtained by comparing the original M2ST and the modified M2ST. The network topology of Cernet2, GéANT and Internet2 were considered for the simulation of GIQM. The results from a series of experiments demonstrate the good performance and outstanding power-saving potential of the proposed GIQM with QoS satisfied

    Power Management Strategies for Wired Communication Networks.

    Get PDF
    With the exponential traffic growth and the rapid expansion of communication infrastructures worldwide, energy expenditure of the Internet has become a major concern in IT-reliant society. This energy problem has motivated the urgent demands of new strategies to reduce the consumption of telecommunication networks, with a particular focus on IP networks. In addition to the development of a new generation of energy-efficient network equipment, a significant body of research has concentrated on incorporating power/energy-awareness into network control and management, which aims at reducing the network power/energy consumption by either dynamically scaling speeds of each active network component to make it capable of adapting to its current load or putting to sleep the lightly loaded network elements and reconfiguring the network. However, the fundamental challenge of greening the Internet is to achieve a balance between the power/energy saving and the demands of quality-of-service (QoS) performance, which is an issue that has received less attention but is becoming a major problem in future green network designs. In this dissertation, we study how energy consumption can be reduced through different power/energy- and QoS-aware strategies for wired communication networks. To sufficiently reduce energy consumption while meeting the desire QoS requirements, we introduce several different schemes combing power management techniques with different scheduling strategies, which can be classified into experimental power management (EPM) and algorithmic power management (APM). In these proposed schemes, the power management techniques that we focus on are speed scaling and sleep mode. When the network processor is active, its speed and supply voltage can be decreased to reduce the energy consumption (speed scaling), while when the processor is idle, it can be put in a low power mode to save the energy consumption (sleep mode). The resulting problem is to determine how and when to adjust speeds for the processors, and/or to put a device into sleep mode. In this dissertation, we first discuss three families of dynamic voltage/frequency scaling (DVFS) based, QoS-aware EPM schemes, which aim to reduce the energy consumption in network equipment by using different packet scheduling strategies, while adhering to QoS requirements of supported applications. Then, we explore the problem of energy minimization under QoS constraints through a mathematical programming model, which is a DVFS-based, delay-aware APM scheme combing the speed scaling technique with the existing rate monotonic scheduling policy. Among these speed scaling based schemes, up to 26.76% dynamic power saving of the total power consumption can be achieved. In addition to speed scaling approaches, we further propose a sleep-based, traffic-aware EPM scheme, which is used to reduce power consumption by greening routing light load and putting the related network equipment into sleep mode according to twelve flow traffic density changes in 24-hour of an arbitrarily selected day. Meanwhile, a speed scaling technique without violating network QoS performance is also considered in this scheme when the traffic is rerouted. Applying this sleep-based strategy can lead to power savings of up to 62.58% of the total power consumption

    Framework For Performance Analysis of Optical Circuit Switched Network Planning Algorithms

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb Ecole Polytechnique Fédérale de Lausann
    corecore