31 research outputs found

    When UAV Meets IRS: Expanding Air-Ground Networks via Passive Reflection

    Get PDF
    Thanks to their flexibility and mobility, unmanned aerial vehicles (UAVs) have been widely applied in wireless networks. However, UAV communications may suffer from blockage and eavesdropping in practical scenarios due to the complex environment. Taking the recent advances in intelligent reflecting surface (IRS) to reconfigure the propagation environments, in this article, we employ IRS to enhance the performance of UAV-aided air-ground networks. First, we overview the combination of UAV and IRS, by introducing the diverse applications of IRS and the appealing advantages of UAV, and highlighting the benefits of combining them. Then, we investigate two case studies where the UAV trajectory, the transmit beamforming and the IRS passive beamforming are jointly optimized. In the first case study, by equipping the IRS on a UAV, the average achievable rate of the relaying network is maximized. In the second one, the IRS is deployed to assist the UAV-ground communication while combating the adversarial eavesdropper. Simulation results are provided to demonstrate the performance enhancement resulting from combining UAV and IRS in air-ground networks. Finally, we shed light on some challenging issues to be resolved for practical implementations in this direction

    Energy-Aware Resource Allocation and Trajectory Design for UAV-Enabled ISAC

    Full text link
    In this paper, we investigate joint resource allocation and trajectory design for multi-user multi-target unmanned aerial vehicle (UAV)-enabled integrated sensing and communication (ISAC). To improve sensing accuracy, the UAV is forced to hover during sensing.~In particular, we jointly optimize the two-dimensional trajectory, velocity, downlink information and sensing beamformers, and sensing indicator to minimize the average power consumption of a fixed-altitude UAV, while considering the quality of service of the communication users and the sensing tasks. To tackle the resulting non-convex mixed integer non-linear program (MINLP), we exploit semidefinite relaxation, the big-M method, and successive convex approximation to develop an alternating optimization-based algorithm.~Our simulation results demonstrate the significant power savings enabled by the proposed scheme compared to two baseline schemes employing heuristic trajectories.Comment: This paper has been accepted for presentation at IEEE GLOBECOM 202

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    IRS-aided UAV for Future Wireless Communications: A Survey and Research Opportunities

    Full text link
    Both unmanned aerial vehicles (UAVs) and intelligent reflecting surfaces (IRS) are gaining traction as transformative technologies for upcoming wireless networks. The IRS-aided UAV communication, which introduces IRSs into UAV communications, has emerged in an effort to improve the system performance while also overcoming UAV communication constraints and issues. The purpose of this paper is to provide a comprehensive overview of IRSassisted UAV communications. First, we provide five examples of how IRSs and UAVs can be combined to achieve unrivaled potential in difficult situations. The technological features of the most recent relevant researches on IRS-aided UAV communications from the perspective of the main performance criteria, i.e., energy efficiency, security, spectral efficiency, etc. Additionally, previous research studies on technology adoption as machine learning algorithms. Lastly, some promising research directions and open challenges for IRS-aided UAV communication are presented

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Secure and Reliable Resource Allocation and Caching in Aerial-Terrestrial Cloud Networks (ATCNs)

    Get PDF
    Aerial-terrestrial cloud networks (ATCNs), global integration of air and ground communication systems, pave a way for a large set of applications such as surveillance, on-demand transmissions, data-acquisition, and navigation. However, such networks suffer from crucial challenges of secure and reliable resource allocation and content-caching as the involved entities are highly dynamic and there is no fine-tuned strategy to accommodate their connectivity. To resolve this quandary, cog-chain, a novel paradigm for secure and reliable resource allocation and content-caching in ATCNs, is presented. Various requirements, key concepts, and issues with ATCNs are also presented along with basic concepts to establish a cog-chain in ATCNs. Feed and fetch modes are utilized depending on the involved entities and caching servers. In addition, a cog-chain communication protocol is presented which avails to evaluate the formation of a virtual cog-chain between the nodes and the content-caching servers. The efficacy of the proposed solution is demonstrated through consequential gains observed for signaling overheads, computational time, reliability, and resource allocation growth. The proposed approach operates with the signaling overheads ranging between 30.36 and 303.6 bytes?hops/sec and the formation time between 186 and 195 ms. Furthermore, the overall time consumption is 83.33% lower than the sequential-verification model and the resource allocation growth is 27.17% better than the sequential-verification model. - 2019 IEEE.This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) grant through the Korean Government (MSIT) (Rule Specification-Based Misbehavior Detection for IoT-Embedded Cyber-Physical Systems) under Grant 2017-0-00664, and in part by the Soonchunhyang University Research Fund.Scopu

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    Secrecy analysis of UAV-based mmWave relaying network

    Get PDF
    Employing unmanned aerial vehicles (UAVs) in millimeter-wave (mmWave) networks as relays has emerged as an appealing solution to assist remote or blocked communication nodes. In this case, the network security becomes a great challenge due to the presence of malicious eavesdroppers. In this paper, we perform a secrecy analysis for a UAV-based mmWave relaying network. We first investigate the relaying scheme without jamming where the UAV decodes and forwards the information from the source to the destination with malicious eavesdropping. Furthermore, to enhance the secrecy performance, we propose a cooperative jamming scheme via utilizing the destination and an external UAV to cooperatively disrupt the eavesdroppers at the two stages of relaying, respectively. Using the probability of line-of-sight (LoS) between the UAV and ground nodes, the three-dimensional (3D) antenna gain, and the Nakagami-m small-scale fading model, the secrecy outage probability (SOP) of the two schemes with and without jamming is analyzed. Closed-form expressions for the SOP of the two schemes are obtained by employing the Gauss-Chebyshev quadrature. Simulation results are presented to validate the theoretical expressions of SOP and to show the effectiveness of the proposed schemes
    corecore