57,420 research outputs found

    PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Get PDF
    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks

    XLP: A Cross-Layer Protocol for Efficient Communication in Wireless Sensor Networks

    Get PDF
    Severe energy constraints of battery-powered sensor nodes necessitate energy-efficient communication in Wireless Sensor Networks (WSNs). However, the vast majority of the existing solutions is based on classical layered protocols approach, which leads to significant overhead. It is much more efficient to have a unified scheme which blends common protocol layer functionalities into a cross-layer module. In this paper, a cross layer protocol (XLP) is introduced, which achieves congestion control, routing, and medium access control in a cross-layer fashion. The design principle of XLP is based on the cross-layer concept of initiative determination, which enables receiver-based contention, initiative-based forwarding, local congestion control, and distributed duty cycle operation to realize efficient and reliable communication in WSNs. The initiative determination requires simple comparisons against thresholds, and thus is very simple to implement, even on computationally impaired devices. To the best of our knowledge, XLP is the first protocol that integrates functionalities of all layers from PHY to transport into a cross-layer protocol. A cross-layer analytical framework is developed to investigate the performance of the XLP. Moreover, in a cross-layer simulation platform, the state-of-the- art layered and cross-layer protocols have been implemented along with XLP for performance evaluations. XLP significantly improves the communication performance and outperforms the traditional layered protocol architectures in terms of both network performance and implementation complexity

    Flexible quality of service model for wireless body area sensor networks

    Get PDF
    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency (RF) ultra-wideband (UWB) technology has developed substantially for physiological signal monitoring due to its advantages such as low power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this letter, we provide a flexible quality of service (QoS) model for ad-hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad-hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems

    XLP: A Cross-Layer Protocol for Efficient Communication in Wireless Sensor Networks

    Get PDF
    Severe energy constraints of battery-powered sensor nodes necessitate energy-efficient communication in Wireless Sensor Networks (WSNs). However, the vast majority of the existing solutions is based on classical layered protocols approach, which leads to significant overhead. It is much more efficient to have a unified scheme which blends common protocol layer functionalities into a cross-layer module. In this paper, a cross layer protocol (XLP) is introduced, which achieves congestion control, routing, and medium access control in a cross-layer fashion. The design principle of XLP is based on the cross-layer concept of initiative determination, which enables receiver-based contention, initiative-based forwarding, local congestion control, and distributed duty cycle operation to realize efficient and reliable communication in WSNs. The initiative determination requires simple comparisons against thresholds, and thus is very simple to implement, even on computationally impaired devices. To the best of our knowledge, XLP is the first protocol that integrates functionalities of all layers from PHY to transport into a cross-layer protocol. A cross-layer analytical framework is developed to investigate the performance of the XLP. Moreover, in a cross-layer simulation platform, the state-of-the- art layered and cross-layer protocols have been implemented along with XLP for performance evaluations. XLP significantly improves the communication performance and outperforms the traditional layered protocol architectures in terms of both network performance and implementation complexity

    Delay and reliability analysis of p-persistent carrier sense multiple access for multi-event industrial wireless sensor networks

    Get PDF
    In industrial environments various events can concurrently occur and may require different quality of service (QoS) provision based on different priority levels. To reduce the chances of collision and to improve efficiency in multi-event occurrence, Carrier Sense Multiple Access (CSMA) is a preferable choice for Medium Access Control (MAC) protocols. However, it also increases the overall delay. In this paper, a Priority MAC protocol for Multi-Event industrial wireless sensor networks (PMME) is proposed. In PMME, use of different p values/sequences is proposed to enable multi-priority operation, which can be optimized to suit different operational classes within industrial applications including emergency, regulatory control, supervisory control, open-loop control, alerting and monitoring systems. In this work, novel mathematical model as well as simulations are presented to validate the accuracy and performance of the proposed protocol. Mathematical analysis shows that the proposed PMME can prioritize data packets effectively while ensuring ultra-reliable and low latency communications for high priority nodes. Simulations in Castalia verify that PMME with different p values/sequences notably reduces packet delay for all four priority classes. The PMME also returns a high packet success rate compared to other two well-known priority enabled MAC protocols, QoS aware energy-efficient (QAEE) and multi-priority based QoS (MPQ), in multi-event industrial wireless sensor networks

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table
    • 

    corecore