1,626 research outputs found

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Energy-efficient Analytics for Geographically Distributed Big Data

    Full text link
    Big data analytics on geographically distributed datasets (across data centers or clusters) has been attracting increasing interests from both academia and industry, but also significantly complicates the system and algorithm designs. In this article, we systematically investigate the geo-distributed big-data analytics framework by analyzing the fine-grained paradigm and the key design principles. We present a dynamic global manager selection algorithm (GMSA) to minimize energy consumption cost by fully exploiting the system diversities in geography and variation over time. The algorithm makes real-time decisions based on the measurable system parameters through stochastic optimization methods, while achieving the performance balances between energy cost and latency. Extensive trace-driven simulations verify the effectiveness and efficiency of the proposed algorithm. We also highlight several potential research directions that remain open and require future elaborations in analyzing geo-distributed big data

    FogStore: Toward a Distributed Data Store for Fog Computing

    Full text link
    Stateful applications and virtualized network functions (VNFs) can benefit from state externalization to increase their reliability, scalability, and inter-operability. To keep and share the externalized state, distributed data stores (DDSs) are a powerful tool allowing for the management of classical trade-offs in consistency, availability and partitioning tolerance. With the advent of Fog and Edge Computing, stateful applications and VNFs are pushed from the data centers toward the network edge. This poses new challenges on DDSs that are tailored to a deployment in Cloud data centers. In this paper, we propose two novel design goals for DDSs that are tailored to Fog Computing: (1) Fog-aware replica placement, and (2) context-sensitive differential consistency. To realize those design goals on top of existing DDSs, we propose the FogStore system. FogStore manages the needed adaptations in replica placement and consistency management transparently, so that existing DDSs can be plugged into the system. To show the benefits of FogStore, we perform a set of evaluations using the Yahoo Cloud Serving Benchmark.Comment: To appear in Proceedings of 2017 IEEE Fog World Congress (FWC '17

    Fog Computing in IoT Aided Smart Grid Transition- Requirements, Prospects, Status Quos and Challenges

    Full text link
    Due to unfolded developments in both the IT sectors viz. Intelligent Transportation and Information Technology contemporary Smart Grid (SG) systems are leveraged with smart devices and entities. Such infrastructures when bestowed with the Internet of Things (IoT) and sensor network make a universe of objects active and online. The traditional cloud deployment succumbs to meet the analytics and computational exigencies decentralized, dynamic cum resource-time critical SG ecosystems. This paper synoptically inspects to what extent the cloud computing utilities can satisfy the mission-critical requirements of SG ecosystems and which subdomains and services call for fog based computing archetypes. The objective of this work is to comprehend the applicability of fog computing algorithms to interplay with the core centered cloud computing support, thus enabling to come up with a new breed of real-time and latency free SG services. The work also highlights the opportunities brought by fog based SG deployments. Correspondingly, we also highlight the challenges and research thrusts elucidated towards the viability of fog computing for successful SG Transition.Comment: 13 Pages, 1 table, 1 Figur

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Virtual Machine Placement Literature Review

    Full text link
    Cloud Computing Datacenters host millions of virtual machines (VMs) on real world scenarios. In this context, Virtual Machine Placement (VMP) is one of the most challenging problems in cloud infrastructure management, considering also the large number of possible optimization criteria and different formulations that could be studied. VMP literature include relevant topics such as energy-efficiency, Service Level Agreements (SLA), cloud service markets, Quality of Service (QoS) and carbon dioxide emissions, all of them with high economical and ecological impact. This work presents an extensive up-to-date review of the most relevant VMP literature in order to identify research opportunities

    Energy Efficient Virtual Machine Services Placement in Cloud-Fog Architecture

    Full text link
    The proliferation in data volume and processing requests calls for a new breed of on-demand computing. Fog computing is proposed to address the limitations of cloud computing by extending processing and storage resources to the edge of the network. Cloud and fog computing employ virtual machines (VMs) for efficient resource utilization. In order to optimize the virtual environment, VMs can be migrated or replicated over geo-distributed physical machines for load balancing and energy efficiency. In this work, we investigate the offloading of VM services from the cloud to the fog considering the British Telecom (BT) network topology. The analysis addresses the impact of different factors including the VM workload and the proximity of fog nodes to users considering the data rate of state-of-the-art applications. The result show that the optimum placement of VMs significantly decreases the total power consumption by up to 75% compared to a single cloud placement.Comment: International Conference on Transparent Optical Networks ICTON 201

    ECHO: An Adaptive Orchestration Platform for Hybrid Dataflows across Cloud and Edge

    Full text link
    The Internet of Things (IoT) is offering unprecedented observational data that are used for managing Smart City utilities. Edge and Fog gateway devices are an integral part of IoT deployments to acquire real-time data and enact controls. Recently, Edge-computing is emerging as first-class paradigm to complement Cloud-centric analytics. But a key limitation is the lack of a platform-as-a-service for applications spanning Edge and Cloud. Here, we propose ECHO, an orchestration platform for dataflows across distributed resources. ECHO's hybrid dataflow composition can operate on diverse data models -- streams, micro-batches and files, and interface with native runtime engines like TensorFlow and Storm to execute them. It manages the application's lifecycle, including container-based deployment and a registry for state management. ECHO can schedule the dataflow on different Edge, Fog and Cloud resources, and also perform dynamic task migration between resources. We validate the ECHO platform for executing video analytics and sensor streams for Smart Traffic and Smart Utility applications on Raspberry Pi, NVidia TX1, ARM64 and Azure Cloud VM resources, and present our results.Comment: 17 pages, 5 figures, 2 tables, submitted to ICSOC-201

    A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View

    Full text link
    The cloud computing paradigm offers on-demand services over the Internet and supports a wide variety of applications. With the recent growth of Internet of Things (IoT) based applications the usage of cloud services is increasing exponentially. The next generation of cloud computing must be energy-efficient and sustainable to fulfil the end-user requirements which are changing dynamically. Presently, cloud providers are facing challenges to ensure the energy efficiency and sustainability of their services. The usage of large number of cloud datacenters increases cost as well as carbon footprints, which further effects the sustainability of cloud services. In this paper, we propose a comprehensive taxonomy of sustainable cloud computing. The taxonomy is used to investigate the existing techniques for sustainability that need careful attention and investigation as proposed by several academic and industry groups. Further, the current research on sustainable cloud computing is organized into several categories: application design, sustainability metrics, capacity planning, energy management, virtualization, thermal-aware scheduling, cooling management, renewable energy and waste heat utilization. The existing techniques have been compared and categorized based on the common characteristics and properties. A conceptual model for sustainable cloud computing has been proposed along with discussion on future research directions.Comment: 68 pages, 38 figures, ACM Computing Surveys, 201

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing
    • …
    corecore