2,876 research outputs found

    HBMFTEFR: Design of a Hybrid Bioinspired Model for Fault-Tolerant Energy Harvesting Networks via Fuzzy Rule Checks

    Get PDF
    Designing energy harvesting networks requires modelling of energy distribution under different real-time network conditions. These networks showcase better energy efficiency, but are affected by internal & external faults, which increase energy consumption of affected nodes. Due to this probability of node failure, and network failure increases, which reduces QoS (Quality of Service) for the network deployment. To overcome this issue, various fault tolerance & mitigation models are proposed by researchers, but these models require large training datasets & real-time samples for efficient operation. This increases computational complexity, storage cost & end-to-end processing delay of the network, which reduces its QoS performance under real-time use cases. To mitigate these issues, this text proposes design of a hybrid bioinspired model for fault-tolerant energy harvesting networks via fuzzy rule checks. The proposed model initially uses a Genetic Algorithm (GA) to cluster nodes depending upon their residual energy & distance metrics. Clustered nodes are processed via Particle Swarm Optimization (PSO) that assists in deploying a fault-tolerant & energy-harvesting process. The PSO model is further augmented via use of a hybrid Ant Colony Optimization (ACO) Model with Teacher Learner Based Optimization (TLBO), which assists in value-based fault prediction & mitigation operations. All bioinspired models are trained-once during initial network deployment, and then evaluated subsequently for each communication request. After a pre-set number of communications are done, the model re-evaluates average QoS performance, and incrementally reconfigures selected solutions. Due to this incremental tuning, the model is observed to consume lower energy, and showcases lower complexity when compared with other state-of-the-art models. Upon evaluation it was observed that the proposed model showcases 15.4% lower energy consumption, 8.5% faster communication response, 9.2% better throughput, and 1.5% better packet delivery ratio (PDR), when compared with recently proposed energy harvesting models. The proposed model also showcased better fault prediction & mitigation performance when compared with its counterparts, thereby making it useful for a wide variety of real-time network deployments

    Target Tracking in Wireless Sensor Networks

    Get PDF

    Concepts and evolution of research in the field of wireless sensor networks

    Full text link
    The field of Wireless Sensor Networks (WSNs) is experiencing a resurgence of interest and a continuous evolution in the scientific and industrial community. The use of this particular type of ad hoc network is becoming increasingly important in many contexts, regardless of geographical position and so, according to a set of possible application. WSNs offer interesting low cost and easily deployable solutions to perform a remote real time monitoring, target tracking and recognition of physical phenomenon. The uses of these sensors organized into a network continue to reveal a set of research questions according to particularities target applications. Despite difficulties introduced by sensor resources constraints, research contributions in this field are growing day by day. In this paper, we present a comprehensive review of most recent literature of WSNs and outline open research issues in this field

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    corecore