2,306 research outputs found

    Machine Learning Centered Energy Optimization In Cloud Computing: A Review

    Get PDF
    The rapid growth of cloud computing has led to a significant increase in energy consumption, which is a major concern for the environment and economy. To address this issue, researchers have proposed various techniques to improve the energy efficiency of cloud computing, including the use of machine learning (ML) algorithms. This research provides a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively compares different ML approaches in terms of the learning model adopted, ML tools used, model strengths and limitations, datasets used, evaluation metrics and performance. The review categorizes existing approaches into Virtual Machine (VM) selection, VM placement, VM migration, and consolidation methods. This review highlights that among the array of ML models, Deep Reinforcement Learning, TensorFlow as a platform, and CloudSim for dataset generation are the most widely adopted in the literature and emerge as the best choices for constructing ML-driven models that optimize energy consumption in cloud computing

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    CLOUD RESOURCE MANAGEMENT USING A HIERARCHICAL DECENTRALIZED FRAMEWORK

    Get PDF

    Scalable and Distributed Resource Management Protocols for Cloud and Big Data Clusters

    Get PDF
    Cloud data centers require an operating system to manage resources and satisfy operational requirements and management objectives. The growth of popularity in cloud services causes the appearance of a new spectrum of services with sophisticated workload and resource management requirements. Also, data centers are growing by addition of various type of hardware to accommodate the ever-increasing requests of users. Nowadays a large percentage of cloud resources are executing data-intensive applications which need continuously changing workload fluctuations and specific resource management. To this end, cluster computing frameworks are shifting towards distributed resource management for better scalability and faster decision making. Such systems benefit from the parallelization of control and are resilient to failures. Throughout this thesis we investigate algorithms, protocols and techniques to address these challenges in large-scale data centers. We introduce a distributed resource management framework which consolidates virtual machine to as few servers as possible to reduce the energy consumption of data center and hence decrease the cost of cloud providers. This framework can characterize the workload of virtual machines and hence handle trade-off energy consumption and Service Level Agreement (SLA) of customers efficiently. The algorithm is highly scalable and requires low maintenance cost with dynamic workloads and it tries to minimize virtual machines migration costs. We also introduce a scalable and distributed probe-based scheduling algorithm for Big data analytics frameworks. This algorithm can efficiently address the problem job heterogeneity in workloads that has appeared after increasing the level of parallelism in jobs. The algorithm is massively scalable and can reduce significantly average job completion times in comparison with the-state of-the-art. Finally, we propose a probabilistic fault-tolerance technique as part of the scheduling algorithm

    Deep Reinforcement Learning Framework with Q Learning For Optimal Scheduling in Cloud Computing

    Get PDF
    Cloud computing is an emerging technology that is increasingly being appreciated for its diverse uses, encompassing data processing, The Internet of Things (IoT) and the storing of data. The continuous growth in the number of cloud users and the widespread use of IoT devices have resulted in a significant increase in the volume of data being generated by these users and the integration of IoT devices with cloud platforms. The process of managing data stored in the cloud has become more challenging to complete. There are numerous significant challenges that must be overcome in the process of migrating all data to cloud-hosted data centers. High bandwidth consumption, longer wait times, greater costs, and greater energy consumption are only some of the difficulties that must be overcome. Cloud computing, as a result, is able to allot resources in line with the specific actions made by users, which is a result of the conclusion that was mentioned earlier. This phenomenon can be attributed to the provision of a superior Quality of Service (QoS) to clients or users, with an optimal response time. Additionally, adherence to the established Service Level Agreement further contributes to this outcome. Due to this circumstance, it is of utmost need to effectively use the computational resources at hand, hence requiring the formulation of an optimal approach for task scheduling. The goal of this proposed study is to find ways to allocate and schedule cloud-based virtual machines (VMs) and tasks in such a way as to reduce completion times and associated costs. This study presents a new method of scheduling that makes use of Q-Learning to optimize the utilization of resources.The algorithm's primary goals include optimizing its objective function, building the ideal network, and utilizing experience replay techniques

    A Hybrid Optimization Algorithm for Efficient Virtual Machine Migration and Task Scheduling Using a Cloud-Based Adaptive Multi-Agent Deep Deterministic Policy Gradient Technique

    Get PDF
    This To achieve optimal system performance in the quickly developing field of cloud computing, efficient resource management—which includes accurate job scheduling and optimized Virtual Machine (VM) migration—is essential. The Adaptive Multi-Agent System with Deep Deterministic Policy Gradient (AMS-DDPG) Algorithm is used in this study to propose a cutting-edge hybrid optimization algorithm for effective virtual machine migration and task scheduling. An sophisticated combination of the War Strategy Optimization (WSO) and Rat Swarm Optimizer (RSO) algorithms, the Iterative Concept of War and Rat Swarm (ICWRS) algorithm is the foundation of this technique. Notably, ICWRS optimizes the system with an amazing 93% accuracy, especially for load balancing, job scheduling, and virtual machine migration. The VM migration and task scheduling flexibility and efficiency are greatly improved by the AMS-DDPG technology, which uses a powerful combination of deterministic policy gradient and deep reinforcement learning. By assuring the best possible resource allocation, the Adaptive Multi-Agent System method enhances decision-making even more. Performance in cloud-based virtualized systems is significantly enhanced by our hybrid method, which combines deep learning and multi-agent coordination. Extensive tests that include a detailed comparison with conventional techniques verify the effectiveness of the suggested strategy. As a consequence, our hybrid optimization approach is successful. The findings show significant improvements in system efficiency, shorter job completion times, and optimum resource utilization. Cloud-based systems have unrealized potential for synergistic optimization, as shown by the integration of ICWRS inside the AMS-DDPG framework. Enabling a high-performing and sustainable cloud computing infrastructure that can adapt to the changing needs of modern computing paradigms is made possible by this strategic resource allocation, which is attained via careful computational utilization

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper
    corecore