41,429 research outputs found

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    OSCAR: A Collaborative Bandwidth Aggregation System

    Full text link
    The exponential increase in mobile data demand, coupled with growing user expectation to be connected in all places at all times, have introduced novel challenges for researchers to address. Fortunately, the wide spread deployment of various network technologies and the increased adoption of multi-interface enabled devices have enabled researchers to develop solutions for those challenges. Such solutions aim to exploit available interfaces on such devices in both solitary and collaborative forms. These solutions, however, have faced a steep deployment barrier. In this paper, we present OSCAR, a multi-objective, incentive-based, collaborative, and deployable bandwidth aggregation system. We present the OSCAR architecture that does not introduce any intermediate hardware nor require changes to current applications or legacy servers. The OSCAR architecture is designed to automatically estimate the system's context, dynamically schedule various connections and/or packets to different interfaces, be backwards compatible with the current Internet architecture, and provide the user with incentives for collaboration. We also formulate the OSCAR scheduler as a multi-objective, multi-modal scheduler that maximizes system throughput while minimizing energy consumption or financial cost. We evaluate OSCAR via implementation on Linux, as well as via simulation, and compare our results to the current optimal achievable throughput, cost, and energy consumption. Our evaluation shows that, in the throughput maximization mode, we provide up to 150% enhancement in throughput compared to current operating systems, without any changes to legacy servers. Moreover, this performance gain further increases with the availability of connection resume-supporting, or OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks

    Get PDF
    This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN
    • 

    corecore