52,635 research outputs found

    Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry

    Full text link
    Massive machine-type communications (mMTC) is a crucial scenario to support booming Internet of Things (IoTs) applications. In mMTC, although a large number of devices are registered to an access point (AP), very few of them are active with uplink short packet transmission at the same time, which requires novel design of protocols and receivers to enable efficient data transmission and accurate multi-user detection (MUD). Aiming at this problem, grant-free non-orthogonal multiple access (GF-NOMA) protocol is proposed. In GF-NOMA, active devices can directly transmit their preambles and data symbols altogether within one time frame, without grant from the AP. Compressive sensing (CS)-based receivers are adopted for non-orthogonal preambles (NOP)-based MUD, and successive interference cancellation is exploited to decode the superimposed data signals. In this paper, we model, analyze, and optimize the CS-based GF-MONA mMTC system via stochastic geometry (SG), from an aspect of network deployment. Based on the SG network model, we first analyze the success probability as well as the channel estimation error of the CS-based MUD in the preamble phase and then analyze the average aggregate data rate in the data phase. As IoT applications highly demands low energy consumption, low infrastructure cost, and flexible deployment, we optimize the energy efficiency and AP coverage efficiency of GF-NOMA via numerical methods. The validity of our analysis is verified via Monte Carlo simulations. Simulation results also show that CS-based GF-NOMA with NOP yields better MUD and data rate performances than contention-based GF-NOMA with orthogonal preambles and CS-based grant-free orthogonal multiple access.Comment: This paper is submitted to IEEE Internet Of Things Journa

    Power Minimization Resource Allocation for Underlay MISO-NOMA SWIPT Systems

    Get PDF
    The combination of cognitive radio and non-orthogonal multiple access (NOMA) has tremendous potential to achieve high spectral efficiency in the IoT era. In this paper, we focus on the energy-efficient resource allocation of a cognitive multiple-input single-output NOMA system with the aid of simultaneous wireless information and power transfer. Specifically, a non-linear energy harvesting (EH) model is adopted to characterize the non-linear energy conversion property. In order to achieve the green design goal, we aim for the minimization of the system power consumption by jointly designing the transmit beamformer and the receive power splitter subject to the information transmission and EH harvesting requirements of second users (SUs), and the maximum tolerable interference constraints at primary users. However, the formulated optimization problem is non-convex and hard to tackle. By exploiting the classic semi-definite relaxation and successive convex approximation, we propose a penalty function-based algorithm to solve the non-convex problem. The convergence of the proposed algorithm is further proved. Finally, simulation results demonstrate that the non-linear EH model is able to strongly reflect the property of practical energy harvester and the performance gain of the proposed algorithm than the baseline scheme

    Energy Efficient Beamforming Design for MISO Non-Orthogonal Multiple Access Systems

    Get PDF
    When considering the future generation wireless networks, non-orthogonal multiple access (NOMA) represents a viable multiple access technique for improving the spectral efficiency. The basic performance of NOMA is often enhanced using downlink beamforming and power allocation techniques. Although downlink beamforming has been previously studied with different performance criteria, such as sum-rate and max-min rate, it has not been studied in the multiuser, multiple-input single-output (MISO) case, particularly with the energy efficiency criteria. In this paper, we investigate the design of an energy efficient beamforming technique for downlink transmission in the context of a multiuser MISO-NOMA system. In particular, this beamforming design is formulated as a global energy efficiency (GEE) maximization problem with minimum user rate requirements and transmit power constraints. By using the sequential convex approximation (SCA) technique and the Dinkelbach's algorithm to handle the non-convex nature of the GEE-Max problem, we propose two novel algorithms for solving the downlink beamforming problem for the MISO-NOMA system. Our evaluation of the proposed algorithms shows that they offer similar optimal designs and are effective in offering substantial energy efficiencies compared to the designs based on conventional methods.Comment: Accepted at IEEE Transaction on Communicatio

    Efficient Spectrum Sharing Between Coexisting OFDM Radar and Downlink Multiuser Communication Systems

    Full text link
    This paper investigates the problem of joint subcarrier and power allocation in the coexistence of radar and multi-user communication systems. Specifically, in our research scenario, the base station (BS) provides information transmission services for multiple users while ensuring that its interference to a separate radar system will not affect the radar's normal function. To this end, we propose a subcarrier and power allocation scheme based on orthogonal frequency division multiple access (OFDM). The original problem consisting involving multivariate fractional programming and binary variables is highly non-convex. Due to its complexity, we relax the binary constraint by introducing a penalty term, provided that the optimal solution is not affected. Then, by integrating multiple power variables into one matrix, the original problem is reformulated as a multi-ratio fractional programming (FP) problem, and finally a quadratic transform is employed to make the non-convex problem a sequence of convex problems. The numerical results indicate the performance trade-off between the multi-user communication system and the radar system, and notably that the performance of the communication system is not improved with power increase in the presence of radar interference beyond a certain threshold. This provides a useful insight for the energy-efficient design of the system.Comment: 6 pages, 5 figure

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
    • …
    corecore