1,596 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

    Full text link
    We present DeepPicar, a low-cost deep neural network based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the same network architecture---9 layers, 27 million connections and 250K parameters---and can drive itself in real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. We also systematically compare other contemporary embedded computing platforms using the DeepPicar's CNN-based real-time control workload. We find that all tested platforms, including the Pi 3, are capable of supporting the CNN-based real-time control, from 20 Hz up to 100 Hz, depending on hardware platform. However, we find that shared resource contention remains an important issue that must be considered in applying CNN models on shared memory based embedded computing platforms; we observe up to 11.6X execution time increase in the CNN based control loop due to shared resource contention. To protect the CNN workload, we also evaluate state-of-the-art cache partitioning and memory bandwidth throttling techniques on the Pi 3. We find that cache partitioning is ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Horizontally distributed inference of deep neural networks for AI-enabled IoT

    Get PDF
    Motivated by the pervasiveness of artificial intelligence (AI) and the Internet of Things (IoT) in the current “smart everything” scenario, this article provides a comprehensive overview of the most recent research at the intersection of both domains, focusing on the design and development of specific mechanisms for enabling a collaborative inference across edge devices towards the in situ execution of highly complex state-of-the-art deep neural networks (DNNs), despite the resource-constrained nature of such infrastructures. In particular, the review discusses the most salient approaches conceived along those lines, elaborating on the specificities of the partitioning schemes and the parallelism paradigms explored, providing an organized and schematic discussion of the underlying workflows and associated communication patterns, as well as the architectural aspects of the DNNs that have driven the design of such techniques, while also highlighting both the primary challenges encountered at the design and operational levels and the specific adjustments or enhancements explored in response to them.Agencia Estatal de Investigación | Ref. DPI2017-87494-RMinisterio de Ciencia e Innovación | Ref. PDC2021-121644-I00Xunta de Galicia | Ref. ED431C 2022/03-GR

    Distributed deep learning inference in fog networks

    Get PDF
    Today's smart devices are equipped with powerful integrated chips and built-in heterogeneous sensors that can leverage their potential to execute heavy computation and produce a large amount of sensor data. For instance, modern smart cameras integrate artificial intelligence to capture images that detect any objects in the scene and change parameters, such as contrast and color based on environmental conditions. The accuracy of the object recognition and classification achieved by intelligent applications has improved due to recent advancements in artificial intelligence (AI) and machine learning (ML), particularly, deep neural networks (DNNs). Despite the capability to carry out some AI/ML computation, smart devices have limited battery power and computing resources. Therefore, DNN computation is generally offloaded to powerful computing nodes such as cloud servers. However, it is challenging to satisfy latency, reliability, and bandwidth constraints in cloud-based AI. Thus, in recent years, AI services and tasks have been pushed closer to the end-users by taking advantage of the fog computing paradigm to meet these requirements. Generally, the trained DNN models are offloaded to the fog devices for DNN inference. This is accomplished by partitioning the DNN and distributing the computation in fog networks. This thesis addresses offloading DNN inference by dividing and distributing a pre-trained network onto heterogeneous embedded devices. Specifically, it implements the adaptive partitioning and offloading algorithm based on matching theory proposed in an article, titled "Distributed inference acceleration with adaptive dnn partitioning and offloading". The implementation was evaluated in a fog testbed, including Nvidia Jetson nano devices. The obtained results show that the adaptive solution outperforms other schemes (Random and Greedy) with respect to computation time and communication latency
    corecore