34 research outputs found

    Federated Learning for 6G: Applications, Challenges, and Opportunities

    Get PDF
    Traditional machine learning is centralized in the cloud (data centers). Recently, the security concern and the availability of abundant data and computation resources in wireless networks are pushing the deployment of learning algorithms towards the network edge. This has led to the emergence of a fast growing area, called federated learning (FL), which integrates two originally decoupled areas: wireless communication and machine learning. In this paper, we provide a comprehensive study on the applications of FL for sixth generation (6G) wireless networks. First, we discuss the key requirements in applying FL for wireless communications. Then, we focus on the motivating application of FL for wireless communications. We identify the main problems, challenges, and provide a comprehensive treatment of implementing FL techniques for wireless communications

    Design and Optimization of Scheduling and Non-orthogonal Multiple Access Algorithms with Imperfect Channel State Information

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising candidate technology for 5G cellular systems. In this paper, design and optimization of scheduling and NOMA algorithms is investigated. First, the impact of power allocation for NOMA systems with round-robin scheduling is analyzed. A statistic model is developed for network performance analysis of joint scheduling of spectrum resource and power for NOMA algorithms. Then, proportional fairness (PF) scheduling for NOMA algorithms is proposed with a two-step approach, with its objectives to ensure low computational complexity, high throughput, and user fairness. In the first step, an optimal power allocation strategy is developed with an objective maximizing weighted sum rate. In the second step, three fast and scalable scheduling and user pairing algorithms with QoS guarantee are proposed, in which only a few user pairs are checked for NOMA multiplex. The algorithms are extended to the cases with imperfect channel state estimation and more than two users being multiplexed over one resource block. Numerical results show that the proposed algorithms are significantly faster and more scalable than the existing algorithms, and can maintain a higher throughput gain than orthogonal multiple access

    Intelligent and Efficient Ultra-Dense Heterogeneous Networks for 5G and Beyond

    Get PDF
    Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile network. The dense and multi-tier network architecture is able to support the extensive data traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially on the interference coordination and resource management. In this thesis, three novel network schemes are proposed to achieve intelligent and efficient operation based on the deep learning-enabled network awareness. Both optimization and deep learning methods are developed to achieve intelligent and efficient resource allocation in these proposed network schemes. To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic volume and user density are extremely high. We leverage the feature extraction capabilities of deep learning techniques and exploit a long-short term memory (LSTM) neural network to predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamforming is also adaptively adjusted for highly directional transmission to cover these VSCs. Within each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce 55%55\% power consumption in comparison with traditional small cells. In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging 5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE) by monitoring and predicting QoS through the LSTM neural network. The resource allocation in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE as well as minimize the non-orthogonality (NO) in view of implementation constraints. In order to solve this problem, both model-based optimization algorithms and model-free deep reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the achievable I-QoSE gain of MD-IMA over traditional MA is 15%15\% - 18%18\%. In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic. In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split aggregated data stream into multi-layers and use sparse spreading code to partially superpose the modulated symbols on several resource blocks. The simulation results show that the energy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical orthogonal transmission scheme

    Energy-Efficient Resource Allocation for 6G Backscatter-Enabled NOMA IoV Networks

    Get PDF
    The integration of Ambient Backscatter Communication (AmBC) with Non-Orthogonal Multiple Access (NOMA) is expected to support connectivity of low-powered Internet-of-Vehicles (IoVs) in the upcoming Sixth-Generation (6G) transportation systems. This paper proposes an energy-efficient resource allocation framework for the AmBC-enabled NOMA IoV network under imperfect Successive Interference Cancellation (SIC) decoding. In particular, multiple Road-Side Units (RSUs) transmit superimposed signals to their associated IoVs utilizing downlink NOMA transmission. Meanwhile, the Backscatter Tags (BackTags) also transmit data symbols towards nearby IoVs by reflecting the superimposed signals of RSUs. Thus, the objective is to maximize the total energy efficiency of the NOMA IoV network subject to the minimum data rate of all IoVs. A joint problem that simultaneously optimizes the total power budget of each RSU, power allocation coefficient of IoVs and reflection power of BackTags under imperfect SIC decoding is formulated. A Dinkelbach approach is first adopted to transform the optimization problem and then the transformed problem is decoupled into two subproblems for optimal transmit power at RSUs and efficient reflection power at BackTags, respectively. To solve the problems efficiently, dual theory and Karush-Kuhn-Tucker conditions are exploited, where the Lagrangian dual variables are iteratively calculated using the subgradient method. To check the performance of the proposed framework, a benchmark optimization without AmBC is also provided. Numerical results demonstrate the superiority of the proposed AmBC-enabled NOMA IoV framework over the benchmark conventional IoV framework

    Performance analysis of biological resource allocation algorithms for next generation networks.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications listed on page iii

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    corecore