2,250 research outputs found

    Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio with and without Primary Feedback Leveraging

    Full text link
    We consider a secondary user (SU) with energy harvesting capability. We design access schemes for the SU which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ) feedback. We study two problem-formulations. In the first problem-formulation, we characterize the stability region of the proposed schemes. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable. Whereas in the second problem-formulation, the sensing and access probabilities are obtained such that the secondary throughput is maximized under the stability of the primary queue and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS) for the primary user (PU). We consider spectrum sensing errors and assume multipacket reception (MPR) capabilities. Numerical results show the enhanced performance of our proposed systems.Comment: ACCEPTED in EAI Endorsed Transactions on Cognitive Communications. arXiv admin note: substantial text overlap with arXiv:1208.565

    Optimal Compression and Transmission Rate Control for Node-Lifetime Maximization

    Get PDF
    We consider a system that is composed of an energy constrained sensor node and a sink node, and devise optimal data compression and transmission policies with an objective to prolong the lifetime of the sensor node. While applying compression before transmission reduces the energy consumption of transmitting the sensed data, blindly applying too much compression may even exceed the cost of transmitting raw data, thereby losing its purpose. Hence, it is important to investigate the trade-off between data compression and transmission energy costs. In this paper, we study the joint optimal compression-transmission design in three scenarios which differ in terms of the available channel information at the sensor node, and cover a wide range of practical situations. We formulate and solve joint optimization problems aiming to maximize the lifetime of the sensor node whilst satisfying specific delay and bit error rate (BER) constraints. Our results show that a jointly optimized compression-transmission policy achieves significantly longer lifetime (90% to 2000%) as compared to optimizing transmission only without compression. Importantly, this performance advantage is most profound when the delay constraint is stringent, which demonstrates its suitability for low latency communication in future wireless networks.Comment: accepted for publication in IEEE Transactions on Wireless Communicaiton

    Joint Cooperative Spectrum Sensing and MAC Protocol Design for Multi-channel Cognitive Radio Networks

    Get PDF
    In this paper, we propose a semi-distributed cooperative spectrum sen sing (SDCSS) and channel access framework for multi-channel cognitive radio networks (CRNs). In particular, we c onsider a SDCSS scheme where secondary users (SUs) perform sensing and exchange sensing outcomes with ea ch other to locate spectrum holes. In addition, we devise the p -persistent CSMA-based cognitive MAC protocol integrating the SDCSS to enable efficient spectrum sharing among SUs. We then perform throughput analysis and develop an algorithm to determine the spectrum sensing and access parameters to maximize the throughput for a given allocation of channel sensing sets. Moreover, we consider the spectrum sensing set optimization problem for SUs to maxim ize the overall system throughput. We present both exhaustive search and low-complexity greedy algorithms to determine the sensing sets for SUs and analyze their complexity. We also show how our design and analysis can be extended to consider reporting errors. Finally, extensive numerical results are presented to demonstrate the sig nificant performance gain of our optimized design framework with respect to non-optimized designs as well as the imp acts of different protocol parameters on the throughput performance.Comment: accepted for publication EURASIP Journal on Wireless Communications and Networking, 201
    • …
    corecore