4,925 research outputs found

    Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    Full text link
    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.Comment: 14 pages, 15 figures, 4 tables, accepted to appear on IEEE Transactions on Signal Processing, Sept. 201

    Trustworthy Edge Machine Learning: A Survey

    Full text link
    The convergence of Edge Computing (EC) and Machine Learning (ML), known as Edge Machine Learning (EML), has become a highly regarded research area by utilizing distributed network resources to perform joint training and inference in a cooperative manner. However, EML faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EML in the eyes of its stakeholders. This survey provides a comprehensive summary of definitions, attributes, frameworks, techniques, and solutions for trustworthy EML. Specifically, we first emphasize the importance of trustworthy EML within the context of Sixth-Generation (6G) networks. We then discuss the necessity of trustworthiness from the perspective of challenges encountered during deployment and real-world application scenarios. Subsequently, we provide a preliminary definition of trustworthy EML and explore its key attributes. Following this, we introduce fundamental frameworks and enabling technologies for trustworthy EML systems, and provide an in-depth literature review of the latest solutions to enhance trustworthiness of EML. Finally, we discuss corresponding research challenges and open issues.Comment: 27 pages, 7 figures, 10 table

    Learning Optimal Fronthauling and Decentralized Edge Computation in Fog Radio Access Networks

    Full text link
    Fog radio access networks (F-RANs), which consist of a cloud and multiple edge nodes (ENs) connected via fronthaul links, have been regarded as promising network architectures. The F-RAN entails a joint optimization of cloud and edge computing as well as fronthaul interactions, which is challenging for traditional optimization techniques. This paper proposes a Cloud-Enabled Cooperation-Inspired Learning (CECIL) framework, a structural deep learning mechanism for handling a generic F-RAN optimization problem. The proposed solution mimics cloud-aided cooperative optimization policies by including centralized computing at the cloud, distributed decision at the ENs, and their uplink-downlink fronthaul interactions. A group of deep neural networks (DNNs) are employed for characterizing computations of the cloud and ENs. The forwardpass of the DNNs is carefully designed such that the impacts of the practical fronthaul links, such as channel noise and signling overheads, can be included in a training step. As a result, operations of the cloud and ENs can be jointly trained in an end-to-end manner, whereas their real-time inferences are carried out in a decentralized manner by means of the fronthaul coordination. To facilitate fronthaul cooperation among multiple ENs, the optimal fronthaul multiple access schemes are designed. Training algorithms robust to practical fronthaul impairments are also presented. Numerical results validate the effectiveness of the proposed approaches.Comment: to appear in IEEE Transactions on Wireless Communication

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    corecore