1,037 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Performance Review of Selected Topology-Aware Routing Strategies for Clustering Sensor Networks

    Get PDF
    In this paper, cluster-based routing (CBR) protocols for addressing issues pertinent to energy consumption, network lifespan, resource allocation and network coverage are reviewed. The paper presents an indepth  performance analysis and critical review of selected CBR algorithms. The study is domain-specific and simulation-based with emphasis on the tripartite trade-off between coverage, connectivity and lifespan. The rigorous statistical analysis of selected CBR schemes was also presented. Network simulation was conducted with Java-based Atarraya discrete-event simulation toolkit while statistical analysis was carried out using MATLAB. It was observed that the Periodic, Event-Driven and Query-Based Routing (PEQ) schemes performs better than Low-Energy Adaptive Clustering Hierarchy (LEACH), Threshold-Sensitive Energy-Efficient Sensor Network (TEEN) and Geographic Adaptive Fidelity (GAF) in terms of network lifespan, energy consumption and network throughput.Keywords: Wireless sensor network, Hierarchical topologies, Cluster-based routing, Statistical analysis, Network simulatio

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    The support of multipath routing in IPv6-based internet of things

    Get PDF
    The development of IPv6-based network architectures for Internet of Things (IoT) systems is a feasible approach to widen the horizon for more effective applications, but remains a challenge. Network routing needs to be effectively addressed in such environments of scarce computational and energy resources. The Internet Engineering Task Force (IETF) specified the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to provide a basic IPv6-based routing framework for IoT networks. However, the RPL design has the potential of extending its functionality to a further limit and incorporating the support of advanced routing mechanisms. These include multipath routing which has opened the doors for great improvements towards efficient energy balancing, load distribution, and even more. This paper fulfilled a need for an effective review of recent advancements in Internet of Things (IoT) networking. In particular, it presented an effective review and provided a taxonomy of the different multipath routing solutions enhancing the RPL protocol. The aim was to discover its current state and outline the importance of integrating such a mechanism into RPL to revive its potentiality to a wider range of IoT applications. This paper also discussed the latest research findings and provided some insights into plausible follow-up researches

    Transport mechanism for wireless micro sensor network

    Get PDF
    Wireless sensor network (WSN) is a wireless ad hoc network that consists of very large number of tiny sensor nodes communicating with each other with limited power and memory constrain. WSN demands real-time routing which requires messages to be delivered within their end-to-end deadlines (packet lifetime). This report proposes a novel real-time with load distribution (RTLD) routing protocol that provides real time data transfer and efficient distributed energy usage in WSN. The RTLD routing protocol ensures high packet throughput with minimized packet overhead and prolongs the lifetime of WSN. The routing depends on optimal forwarding (OF) decision that takes into account of the link quality, packet delay time and the remaining power of next hop sensor nodes. RTLD routing protocol possesses built-in security measure. The random selection of next hop node using location aided routing and multi-path forwarding contributes to built-in security measure. RTLD routing protocol in WSN has been successfully studied and verified through simulation and real test bed implementation. The performance of RTLD routing in WSN has been compared with the baseline real-time routing protocol. The simulation results show that RTLD experiences less than 150 ms packet delay to forward a packet through 10 hops. It increases the delivery ratio up to 7 % and decreases power consumption down to 15% in unicast forwarding when compared to the baseline routing protocol. However, multi-path forwarding in RTLD increases the delivery ratio up to 20%. In addition, RTLD routing spreads out and balances the forwarding load among sensor nodes towards the destination and thus prolongs the lifetime of WSN by 16% compared to the baseline protocol. The real test bed experiences only slight differences of about 7.5% lower delivery ratio compared to the simulation. The test bed confirms that RTLD routing protocol can be used in many WSN applications including disasters fighting, forest fire detection and volcanic eruption detection
    corecore