1,752 research outputs found

    UAV Swarm-Enabled Aerial CoMP: A Physical Layer Security Perspective

    Get PDF
    Unlike aerial base station enabled by a single unmanned aerial vehicle (UAV), aerial coordinated multiple points (CoMP) can be enabled by a UAV swarm. In this case, the management of multiple UAVs is important. This paper considers the power allocation strategy for a UAV swarm-enabled aerial network to enhance the physical layer security of the downlink transmission, where an eavesdropper moves following the trajectory of the swarm for better eavesdropping. Unlike existing works, we use only the large-scale channel state information (CSI) and maximize the secrecy throughput in a whole-trajectory-oriented manner. The overall transmission energy constraint on each UAV and the total transmission duration for all the legitimate users are considered. The non-convexity of the formulated problem is solved by using max-min optimization with iteration. Both the transmission power of desired signals and artificial noise (AN) are derived iteratively. Simulation results are presented to validate the effectiveness of our proposed power allocation algorithm and to show the advantage of aerial CoMP by using only the large-scale CSI

    Energy Efficient Power Allocation for Distributed Antenna System over Shadowed Nakagami Fading Channel

    Get PDF
    In this paper, the energy efficiency (EE) of downlink distributed antenna system (DAS) with multiple receive antennas is investigated over composite fading channel that takes the path loss, shadow fading and Nakagami-m fading into account. Our aim is to maximize EE which is defined as the ratio of the transmission rate to the total consumed power under the constraints of maximum transmit power of each remote antenna. According to the definition of EE and using the upper bound of average EE, the optimized objective function is provided. Based on this, utilizing Karush-Kuhn-Tucker (KKT) conditions and mathematical derivation, a suboptimal energy efficient power allocation (PA) scheme is developed, and closed-form PA coefficients are obtained. The developed scheme has the EE performance close to the existing optimal scheme. Moreover, it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Besides, it includes the scheme in composite Rayleigh channel as a special case. Simulation results show the effectiveness of the developed scheme
    corecore