33 research outputs found

    New Methods of Efficient Base Station Control for Green Wireless Communications

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 이병기.This dissertation reports a study on developing new methods of efficient base station (BS) control for green wireless communications. The BS control schemes may be classified into three different types depending on the time scale — hours based, minutes based, and milli-seconds based. Specifically, hours basis pertains to determining which BSs to switch on or offminutes basis pertains to user equipment (UE) associationand milli-seconds basis pertains to UE scheduling and radio resource allocation. For system model, the dissertation considers two different models — heterogeneous networks composed of cellular networks and wireless local area networks (WLANs), and cellular networks adopting orthogonal frequency division multiple access (OFDMA) with carrier aggregation (CA). By combining each system model with a pertinent BS control scheme, the dissertation presents three new methods for green wireless communications: 1) BS switching on/off and UE association in heterogeneous networks, 2) optimal radio resource allocation in heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA based cellular networks. The first part of the dissertation presents an algorithm that performs BS switchingon/off and UE association jointly in heterogeneous networks composed of cellular networks and WLANs. It first formulates a general problem which minimizes the total cost function which is designed to balance the energy consumption of overall network and the revenue of cellular networks. Given that the time scale for determining the set of active BSs is much larger than that for UE association, the problem may be decomposed into a UE association algorithm and a BS switching on/off algorithm, and then an optimal UE association policy may be devised for the UE association problem. Since BS switching-on/off problem is a challenging combinatorial problem, two heuristic algorithms are proposed based on the total cost function and the density of access points of WLANs within the coverage of each BS, respectively. According to simulations, the two heuristic algorithms turn out to considerably reduce energy consumption when compared with the case where all the BSs are always turned on. The second part of the dissertation presents an energy-per-bit minimized radioresource allocation scheme in heterogeneous networks equipped with multi-homing capability which connects to different wireless interfaces simultaneously. Specifically, an optimization problem is formulated for the objective of minimizing the energy-per-bit which takes a form of nonlinear fractional programming. Then, a parametric optimization problem is derived out of that fractional programming and the original problem is solved by using a double-loop iteration method. In each iteration, the optimal resource allocation policy is derived by applying Lagrangian duality and an efficient dual update method. In addition, suboptimal resource allocation algorithms are developed by using the properties of the optimal resource allocation policy. Simulation results reveal that the optimal allocation algorithm improves energy efficiency significantly over the existing resource allocation algorithms designed for homogeneous networks and its performance is superior to suboptimal algorithms in reducing energy consumption as well as in enhancing network energy efficiency. The third part of the dissertation presents an energy efficient scheduling algorithm for CA in OFDMA based wireless networks. In support of this, the energy efficiency is newly defined as the ratio of the time-averaged downlink data rate and the time-averaged power consumption of the UE, which is important especially for battery-constrained UEs. Then, a component carrier and resource block allocation problem is formulated such that the proportional fairness of the energy efficiency is guaranteed. Since it is very complicated to determine the optimal solution, a low complexity energy-efficient scheduling algorithm is developed, which approaches the optimal algorithm. Simulation results demonstrate that the proposed scheduling scheme performs close to the optimal scheme and outperforms the existing scheduling schemes for CA.Abstract i List of Figures viii List of Tables x 1 Introduction 1 2 A Joint Algorithm for Base Station Operation and User Association in Heterogeneous Networks 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 UE Association Algorithm . . . . . . . . . . . . . . . . . . . . . . 14 2.5 BS Switching-on/off Algorithm . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Cost Function Based (CFB) Algorithm . . . . . . . . . . . 19 2.5.2 AP Density Based (ADB) Algorithm . . . . . . . . . . . . 19 2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Energy-per-Bit Minimized Radio Resource Allocation in Heterogeneous Networks 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 System Model and Problem Formulation . . . . . . . . . . . . . . . 30 3.3 Parametric Approach to Fractional Programming . . . . . . . . . . 36 3.3.1 Parametric Approach . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Double-Loop Iteration to Determine Optimal θ . . . . . . . 38 3.4 Optimal Resource Allocation Algorithm . . . . . . . . . . . . . . . 39 3.4.1 Optimal Allocation of Subcarrier and Power . . . . . . . . . 41 3.4.2 Optimal Allocation of Time Fraction . . . . . . . . . . . . . 44 3.4.3 Lagrangian Multipliers Update Algorithm . . . . . . . . . . 48 3.5 Design of Suboptimal Algorithms . . . . . . . . . . . . . . . . . . 51 3.5.1 Time-Fraction Allocation First (TAF) Algorithm . . . . . . 51 3.5.2 Normalized Time-Fraction Allocation (NTA) Algorithm . . 53 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Energy Efficient Scheduling for Carrier Aggregation in OFDMA Based Wireless Networks 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Energy Efficiency Proportional Fairness (EEPF) Scheduling . . . . 74 4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Conclusion 87 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 91 References 93Docto

    A comprehensive survey on radio resource management in 5G HetNets: current solutions, future trends and open issues

    Get PDF
    The 5G network technologies are intended to accommodate innovative services with a large influx of data traffic with lower energy consumption and increased quality of service and user quality of experience levels. In order to meet 5G expectations, heterogeneous networks (HetNets) have been introduced. They involve deployment of additional low power nodes within the coverage area of conventional high power nodes and their placement closer to user underlay HetNets. Due to the increased density of small-cell networks and radio access technologies, radio resource management (RRM) for potential 5G HetNets has emerged as a critical avenue. It plays a pivotal role in enhancing spectrum utilization, load balancing, and network energy efficiency. In this paper, we summarize the key challenges i.e., cross-tier interference, co-tier interference, and user association-resource-power allocation (UA-RA-PA) emerging in 5G HetNets and highlight their significance. In addition, we present a comprehensive survey of RRM schemes based on interference management (IM), UA-RA-PA and combined approaches (UA-RA-PA + IM). We introduce a taxonomy for individual (IM, UA-RA-PA) and combined approaches as a framework for systematically studying the existing schemes. These schemes are also qualitatively analyzed and compared to each other. Finally, challenges and opportunities for RRM in 5G are outlined, and design guidelines along with possible solutions for advanced mechanisms are presented

    Managed access dependability for critical services in wireless inter domain environment

    Get PDF
    The Information and Communications Technology (ICT) industry has through the last decades changed and still continues to affect the way people interact with each other and how they access and share information, services and applications in a global market characterized by constant change and evolution. For a networked and highly dynamic society, with consumers and market actors providing infrastructure, networks, services and applications, the mutual dependencies of failure free operations are getting more and more complex. Service Level Agreements (SLAs) between the various actors and users may be used to describe the offerings along with price schemes and promises regarding the delivered quality. However, there is no guarantee for failure free operations whatever efforts and means deployed. A system fails for a number of reasons, but automatic fault handling mechanisms and operational procedures may be used to decrease the probability for service interruptions. The global number of mobile broadband Internet subscriptions surpassed the number of broadband subscriptions over fixed technologies in 2010. The User Equipment (UE) has become a powerful device supporting a number of wireless access technologies and the always best connected opportunities have become a reality. Some services, e.g. health care, smart power grid control, surveillance/monitoring etc. called critical services in this thesis, put high requirements on service dependability. A definition of dependability is the ability to deliver services that can justifiably be trusted. For critical services, the access networks become crucial factors for achieving high dependability. A major challenge in a multi operator, multi technology wireless environment is the mobility of the user that necessitates handovers according to the physical movement. In this thesis it is proposed an approach for how to optimize the dependability for critical services in multi operator, multi technology wireless environment. This approach allows predicting the service availability and continuity at real-time. Predictions of the optimal service availability and continuity are considered crucial for critical services. To increase the dependability for critical services dual homing is proposed where the use of combinations of access points, possibly owned by different operators and using different technologies, are optimized for the specific location and movement of the user. A central part of the thesis is how to ensure the disjointedness of physical and logical resources so important for utilizing the dependability increase potential with dual homing. To address the interdependency issues between physical and logical resources, a study of Operations, Administrations, and Maintenance (OA&M) processes related to the access network of a commercial Global System for Mobile Communications (GSM)/Universal Mobile Telecommunications System (UMTS) operator was performed. The insight obtained by the study provided valuable information of the inter woven dependencies between different actors in the delivery chain of services. Based on the insight gained from the study of OA&M processes a technological neutral information model of physical and logical resources in the access networks is proposed. The model is used for service availability and continuity prediction and to unveil interdependencies between resources for the infrastructure. The model is proposed as an extension of the Media Independent Handover (MIH) framework. A field trial in a commercial network was conducted to verify the feasibility in retrieving the model related information from the operators' Operational Support Systems (OSSs) and to emulate the extension and usage of the MIH framework. In the thesis it is proposed how measurement reports from UE and signaling in networks are used to define virtual cells as part of the proposed extension of the MIH framework. Virtual cells are limited geographical areas where the radio conditions are homogeneous. Virtual cells have radio coverage from a number of access points. A Markovian model is proposed for prediction of the service continuity of a dual homed critical service, where both the infrastructure and radio links are considered. A dependability gain is obtained by choosing a global optimal sequence of access points. Great emphasizes have been on developing computational e cient techniques and near-optimal solutions considered important for being able to predict service continuity at real-time for critical services. The proposed techniques to obtain the global optimal sequence of access points may be used by handover and multi homing mechanisms/protocols for timely handover decisions and access point selections. With the proposed extension of the MIH framework a global optimal sequence of access points providing the highest reliability may be predicted at real-time

    Resource Allocation for Next Generation Radio Access Networks

    Get PDF
    Driven by data hungry applications, the architecture of mobile networks is moving towards that of densely deployed cells where each cell may use a different access technology as well as a different frequency band. Next generation networks (NGNs) are essentially identified by their dramatically increased data rates and their sustainable deployment. Motivated by these requirements, in this thesis we focus on (i) capacity maximisation, (ii) energy efficient configuration of different classes of radio access networks (RANs). To fairly allocate the available resources, we consider proportional fair rate allocations. We first consider capacity maximisation in co-channel 4G (LTE) networks, then we proceed to capacity maximisation in mixed LTE (including licensed LTE small cells) and 802.11 (WiFi) networks. And finally we study energy efficient capacity maximisation of dense 3G/4G co-channel small cell networks. In each chapter we provide a network model and a scalable resource allocation approach which may be implemented in a centralised or distributed manner depending on the objective and network constraints

    DR9.3 Final report of the JRRM and ASM activities

    Get PDF
    Deliverable del projecte europeu NEWCOM++This deliverable provides the final report with the summary of the activities carried out in NEWCOM++ WPR9, with a particular focus on those obtained during the last year. They address on the one hand RRM and JRRM strategies in heterogeneous scenarios and, on the other hand, spectrum management and opportunistic spectrum access to achieve an efficient spectrum usage. Main outcomes of the workpackage as well as integration indicators are also summarised.Postprint (published version

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci
    corecore