2,784 research outputs found

    Sum-rate Maximizing in Downlink Massive MIMO Systems with Circuit Power Consumption

    Full text link
    The downlink of a single cell base station (BS) equipped with large-scale multiple-input multiple-output (MIMO) system is investigated in this paper. As the number of antennas at the base station becomes large, the power consumed at the RF chains cannot be anymore neglected. So, a circuit power consumption model is introduced in this work. It involves that the maximal sum-rate is not obtained when activating all the available RF chains. Hence, the aim of this work is to find the optimal number of activated RF chains that maximizes the sum-rate. Computing the optimal number of activated RF chains must be accompanied by an adequate antenna selection strategy. First, we derive analytically the optimal number of RF chains to be activated so that the average sum-rate is maximized under received equal power. Then, we propose an efficient greedy algorithm to select the sub-optimal set of RF chains to be activated with regards to the system sum-rate. It allows finding the balance between the power consumed at the RF chains and the transmitted power. The performance of the proposed algorithm is compared with the optimal performance given by brute force search (BFS) antenna selection. Simulations allow to compare the performance given by greedy, optimal and random antenna selection algorithms.Comment: IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2015

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201
    • …
    corecore