9,173 research outputs found

    EEGRA: Energy Efficient Geographic Routing Algorithms for Wireless Sensor Network

    Get PDF
    [[abstract]]Energy efficiency is critical in wireless sensor networks (WSN) for system reliability and deployment cost. The power consumption of the communication in multi-hop WSN is primarily decided by three factors: routing distance, signal interference, and computation cost of routing. Several routing algorithms designed for energy efficiency or interference avoidance had been proposed. However, they are either too complex to be useful in practices or specialized for certain WSN architectures. In this paper, we propose two energy efficient geographic routing algorithms (EEGRA) for wireless sensor networks, which are based on existing geographic routing algorithms and take all three factors into account. The first algorithm combines the interference into the routing cost function, and uses it in the routing decision. The second algorithm transforms the problem into a constrained optimization problem, and solves it by searching the optimal discretized interference level. We integrate four geographic routing algorithms: GOAFR+, Face Routing, GPSR, and RandHT, to both EEGRA algorithms and compare them with three other routing methods in terms of power consumption and computation cost for the grid and irregular sensor topologies. The results of our experiments show both algorithms conserve sensor’s routing energy 30% ~ 50% comparing to general geographic routing algorithms. In addition, the time complexity of EEGRA algorithms is similar to the geographic greedy routing methods, which is much faster than the optimal SINR-based algorithm.[[conferencetype]]國際[[conferencedate]]20121213~20121215[[iscallforpapers]]Y[[conferencelocation]]San Marcos, Texas, US

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I

    Reliable Energy-Efficient Routing Algorithm for Vehicle-Assisted Wireless Ad-Hoc Networks

    Full text link
    We investigate the design of the optimal routing path in a moving vehicles involved the internet of things (IoT). In our model, jammers exist that may interfere with the information exchange between wireless nodes, leading to worsened quality of service (QoS) in communications. In addition, the transmit power of each battery-equipped node is constrained to save energy. We propose a three-step optimal routing path algorithm for reliable and energy-efficient communications. Moreover, results show that with the assistance of moving vehicles, the total energy consumed can be reduced to a large extend. We also study the impact on the optimal routing path design and energy consumption which is caused by path loss, maximum transmit power constrain, QoS requirement, etc.Comment: 6 pages, 5 figures, rejected by IEEE Globecom 2017,resubmit to IEEE WCNC 201
    corecore