47 research outputs found

    Memory Systems and Interconnects for Scale-Out Servers

    Get PDF
    The information revolution of the last decade has been fueled by the digitization of almost all human activities through a wide range of Internet services. The backbone of this information age are scale-out datacenters that need to collect, store, and process massive amounts of data. These datacenters distribute vast datasets across a large number of servers, typically into memory-resident shards so as to maintain strict quality-of-service guarantees. While data is driving the skyrocketing demands for scale-out servers, processor and memory manufacturers have reached fundamental efficiency limits, no longer able to increase server energy efficiency at a sufficient pace. As a result, energy has emerged as the main obstacle to the scalability of information technology (IT) with huge economic implications. Delivering sustainable IT calls for a paradigm shift in computer system design. As memory has taken a central role in IT infrastructure, memory-centric architectures are required to fully utilize the IT's costly memory investment. In response, processor architects are resorting to manycore architectures to leverage the abundant request-level parallelism found in data-centric applications. Manycore processors fully utilize available memory resources, thereby increasing IT efficiency by almost an order of magnitude. Because manycore server chips execute a large number of concurrent requests, they exhibit high incidence of accesses to the last-level-cache for fetching instructions (due to large instruction footprints), and off-chip memory (due to lack of temporal reuse in on-chip caches) for accessing dataset objects. As a result, on-chip interconnects and the memory system are emerging as major performance and energy-efficiency bottlenecks in servers. This thesis seeks to architect on-chip interconnects and memory systems that are tuned for the requirements of memory-centric scale-out servers. By studying a wide range of data-centric applications, we uncover application phenomena common in data-centric applications, and examine their implications on on-chip network and off-chip memory traffic. Finally, we propose specialized on-chip interconnects and memory systems that leverage common traffic characteristics, thereby improving server throughput and energy efficiency

    Improving prefetching mechanisms for tiled CMP platforms

    Get PDF
    Recently, high performance processor designs have evolved toward Chip-Multiprocessor (CMP) architectures to deal with instruction level parallelism limitations and, more important, to manage the power consumption that is becoming unaffordable due to the increased transistor count and clock frequency. At the present moment, this architecture, which implements multiple processing cores on a single die, is commercially available with up to twenty four processors on a single chip and there are roadmaps and research trends that suggest that number of cores will increase in the near future. The increasing on number of cores has converted the interconnection network in a key issue that will have significant impact on performance. Moreover, as the number of cores increases, tiled architectures are foreseen to provide a scalable solution to handle design complexity. Network-on-Chip (NoC) emerges as a solution to deal with growing on-chip wire delays. On the other hand, CMP designs are likely to be equipped with latency hiding techniques like prefetching in order to reduce the negative impact on performance that, otherwise, high cache miss rates would lead to. Unfortunately, the extra number of network messages that prefetching entails can drastically increase power consumption and the latency in the NoC. In this thesis, we do not develop a new prefetching technique for CMPs but propose improvements applicable to any of them. Specifically, we analyze the behavior of the prefetching in the CMPs and its impact to the interconnect. We propose several dynamic management techniques to improve the performance of the prefetching mechanism in the system. Furthermore, we identify the main problems when implementing prefetching in distributed memory systems like tiled architectures and propose directions to solve them. Finally, we propose several research lines to continue the work done in this thesis.Recentment l'arquitectura dels processadors d'altes prestacions ha evolucionat cap a processadors amb diversos nuclis per a concordar amb les limitacions del paral·lelisme a nivell d'instrucció i, mes important encara, per tractar el consum d'energia que ha esdevingut insostenible degut a l'increment de transistors i la freqüència de rellotge. Ara mateix, aquestes arquitectures, que implementes varis nuclis en un sol xip, estan a la venta amb mes de vint-i-quatre processadors en un sol xip i hi ha previsions que suggereixen que aquest nombre de nuclis creixerà en un futur pròxim. Aquest increment del nombre de nuclis, ha convertit la xarxa que els connecta en un punt clau que tindrà un impacte important en el seu rendiment. Una topologia de xarxa que sembla que serà capaç de proveir una solució escalable per aquestes arquitectures ha estat la topologia tile. Les xarxes en el xip (NoC) es presenten com la solució del increment de la latència dels cables del xip. Per altre banda, els dissenys de multiprocessadors seguiran disposant de tècniques de reducció de latència de memòria com el prefetch per tal de reduir l'impacte negatiu en rendiment que, altrament, tindríem degut als elevats temps de latència en fallades a memòria cache. Desafortunadament, el gran nombre de peticions destinades a prefetch, pot augmentar dràsticament la congestió a la xarxa i el consum d'energia. En aquesta tesi, no desenvolupem cap tècnica nova de prefetching, però proposem millores aplicables a qualsevol d'ells. Concretament analitzem el comportament del prefetching en multiprocessadors i el seu impacte a la xarxa. Proposem diverses tècniques de control dinàmic per millor el rendiment del prefetcher al sistema. A més, identifiquem els problemes principals d'implementar el prefetching en els sistemes de memòria distribuïts com els de les arquitectures tile i proposem línies d'investigació per solucionar-los. Finalment, també proposem diverses línies d'investigació per continuar amb el treball fet en aquesta tesi.Postprint (published version

    Adaptive memory hierarchies for next generation tiled microarchitectures

    Get PDF
    Les últimes dècades el rendiment dels processadors i de les memòries ha millorat a diferent ritme, limitant el rendiment dels processadors i creant el conegut memory gap. Sol·lucionar aquesta diferència de rendiment és un camp d'investigació d'actualitat i que requereix de noves sol·lucions. Una sol·lució a aquest problema són les memòries “cache”, que permeten reduïr l'impacte d'unes latències de memòria creixents i que conformen la jerarquia de memòria. La majoria de d'organitzacions de les “caches” estan dissenyades per a uniprocessadors o multiprcessadors tradicionals. Avui en dia, però, el creixent nombre de transistors disponible per xip ha permès l'aparició de xips multiprocessador (CMPs). Aquests xips tenen diferents propietats i limitacions i per tant requereixen de jerarquies de memòria específiques per tal de gestionar eficientment els recursos disponibles. En aquesta tesi ens hem centrat en millorar el rendiment i la eficiència energètica de la jerarquia de memòria per CMPs, des de les “caches” fins als controladors de memòria. A la primera part d'aquesta tesi, s'han estudiat organitzacions tradicionals per les “caches” com les privades o compartides i s'ha pogut constatar que, tot i que funcionen bé per a algunes aplicacions, un sistema que s'ajustés dinàmicament seria més eficient. Tècniques com el Cooperative Caching (CC) combinen els avantatges de les dues tècniques però requereixen un mecanisme centralitzat de coherència que té un consum energètic molt elevat. És per això que en aquesta tesi es proposa el Distributed Cooperative Caching (DCC), un mecanisme que proporciona coherència en CMPs i aplica el concepte del cooperative caching de forma distribuïda. Mitjançant l'ús de directoris distribuïts s'obté una sol·lució més escalable i que, a més, disposa d'un mecanisme de marcatge més flexible i eficient energèticament. A la segona part, es demostra que les aplicacions fan diferents usos de la “cache” i que si es realitza una distribució de recursos eficient es poden aprofitar els que estan infrautilitzats. Es proposa l'Elastic Cooperative Caching (ElasticCC), una organització capaç de redistribuïr la memòria “cache” dinàmicament segons els requeriments de cada aplicació. Una de les contribucions més importants d'aquesta tècnica és que la reconfiguració es decideix completament a través del maquinari i que tots els mecanismes utilitzats es basen en estructures distribuïdes, permetent una millor escalabilitat. ElasticCC no només és capaç de reparticionar les “caches” segons els requeriments de cada aplicació, sinó que, a més a més, és capaç d'adaptar-se a les diferents fases d'execució de cada una d'elles. La nostra avaluació també demostra que la reconfiguració dinàmica de l'ElasticCC és tant eficient que gairebé proporciona la mateixa taxa de fallades que una configuració amb el doble de memòria.Finalment, la tesi es centra en l'estudi del comportament de les memòries DRAM i els seus controladors en els CMPs. Es demostra que, tot i que els controladors tradicionals funcionen eficientment per uniprocessadors, en CMPs els diferents patrons d'accés obliguen a repensar com estan dissenyats aquests sistemes. S'han presentat múltiples sol·lucions per CMPs però totes elles es veuen limitades per un compromís entre el rendiment global i l'equitat en l'assignació de recursos. En aquesta tesi es proposen els Thread Row Buffers (TRBs), una zona d'emmagatenament extra a les memòries DRAM que permetria guardar files de dades específiques per a cada aplicació. Aquest mecanisme permet proporcionar un accés equitatiu a la memòria sense perjudicar el seu rendiment global. En resum, en aquesta tesi es presenten noves organitzacions per la jerarquia de memòria dels CMPs centrades en la escalabilitat i adaptativitat als requeriments de les aplicacions. Els resultats presentats demostren que les tècniques proposades proporcionen un millor rendiment i eficiència energètica que les millors tècniques existents fins a l'actualitat.Processor performance and memory performance have improved at different rates during the last decades, limiting processor performance and creating the well known "memory gap". Solving this performance difference is an important research field and new solutions must be proposed in order to have better processors in the future. Several solutions exist, such as caches, that reduce the impact of longer memory accesses and conform the system memory hierarchy. However, most of the existing memory hierarchy organizations were designed for single processors or traditional multiprocessors. Nowadays, the increasing number of available transistors has allowed the apparition of chip multiprocessors, which have different constraints and require new ad-hoc memory systems able to efficiently manage memory resources. Therefore, in this thesis we have focused on improving the performance and energy efficiency of the memory hierarchy of chip multiprocessors, ranging from caches to DRAM memories. In the first part of this thesis we have studied traditional cache organizations such as shared or private caches and we have seen that they behave well only for some applications and that an adaptive system would be desirable. State-of-the-art techniques such as Cooperative Caching (CC) take advantage of the benefits of both worlds. This technique, however, requires the usage of a centralized coherence structure and has a high energy consumption. Therefore we propose the Distributed Cooperative Caching (DCC), a mechanism to provide coherence to chip multiprocessors and apply the concept of cooperative caching in a distributed way. Through the usage of distributed directories we obtain a more scalable solution and, in addition, has a more flexible and energy-efficient tag allocation method. We also show that applications make different uses of cache and that an efficient allocation can take advantage of unused resources. We propose Elastic Cooperative Caching (ElasticCC), an adaptive cache organization able to redistribute cache resources dynamically depending on application requirements. One of the most important contributions of this technique is that adaptivity is fully managed by hardware and that all repartitioning mechanisms are based on distributed structures, allowing a better scalability. ElasticCC not only is able to repartition cache sizes to application requirements, but also is able to dynamically adapt to the different execution phases of each thread. Our experimental evaluation also has shown that the cache partitioning provided by ElasticCC is efficient and is almost able to match the off-chip miss rate of a configuration that doubles the cache space. Finally, we focus in the behavior of DRAM memories and memory controllers in chip multiprocessors. Although traditional memory schedulers work well for uniprocessors, we show that new access patterns advocate for a redesign of some parts of DRAM memories. Several organizations exist for multiprocessor DRAM schedulers, however, all of them must trade-off between memory throughput and fairness. We propose Thread Row Buffers, an extended storage area in DRAM memories able to store a data row for each thread. This mechanism enables a fair memory access scheduling without hurting memory throughput. Overall, in this thesis we present new organizations for the memory hierarchy of chip multiprocessors which focus on the scalability and of the proposed structures and adaptivity to application behavior. Results show that the presented techniques provide a better performance and energy-efficiency than existing state-of-the-art solutions

    A RISC-V-based FPGA Overlay to Simplify Embedded Accelerator Deployment

    Get PDF
    Modern cyber-physical systems (CPS) are increasingly adopting heterogeneous systems-on-chip (HeSoCs) as a computing platform to satisfy the demands of their sophisticated workloads. FPGA-based HeSoCs can reach high performance and energy efficiency at the cost of increased design complexity. High-Level Synthesis (HLS) can ease IP design, but automated tools still lack the maturity to efficiently and easily tackle system-level integration of the many hardware and software blocks included in a modern CPS. We present an innovative hardware overlay offering plug-and-play integration of HLS-compiled or handcrafted acceleration IPs thanks to a customizable wrapper attached to the overlay interconnect and providing shared-memory communication to the overlay cores. The latter are based on the open RISC-V ISA and offer simplified software management of the acceleration IP. Deploying the proposed overlay on a Xilinx ZU9EG shows ≈ 20% LUT usage and ≈ 4× speedup compared to program execution on the ARM host core

    Proximity coherence for chip-multiprocessors

    Get PDF
    Many-core architectures provide an efficient way of harnessing the growing numbers of transistors available in modern fabrication processes; however, the parallel programs run on these platforms are increasingly limited by the energy and latency costs of communication. Existing designs provide a functional communication layer but do not necessarily implement the most efficient solution for chip-multiprocessors, placing limits on the performance of these complex systems. In an era of increasingly power limited silicon design, efficiency is now a primary concern that motivates designers to look again at the challenge of cache coherence. The first step in the design process is to analyse the communication behaviour of parallel benchmark suites such as Parsec and SPLASH-2. This thesis presents work detailing the sharing patterns observed when running the full benchmarks on a simulated 32-core x86 machine. The results reveal considerable locality of shared data accesses between threads with consecutive operating system assigned thread IDs. This pattern, although of little consequence in a multi-node system, corresponds to strong physical locality of shared data between adjacent cores on a chip-multiprocessor platform. Traditional cache coherence protocols, although often used in chip-multiprocessor designs, have been developed in the context of older multi-node systems. By redesigning coherence protocols to exploit new patterns such as the physical locality of shared data, improving the efficiency of communication, specifically in chip-multiprocessors, is possible. This thesis explores such a design – Proximity Coherence – a novel scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure.EPSRC DTA research scholarshi

    Optimizing for a Many-Core Architecture without Compromising Ease-of-Programming

    Get PDF
    Faced with nearly stagnant clock speed advances, chip manufacturers have turned to parallelism as the source for continuing performance improvements. But even though numerous parallel architectures have already been brought to market, a universally accepted methodology for programming them for general purpose applications has yet to emerge. Existing solutions tend to be hardware-specific, rendering them difficult to use for the majority of application programmers and domain experts, and not providing scalability guarantees for future generations of the hardware. This dissertation advances the validation of the following thesis: it is possible to develop efficient general-purpose programs for a many-core platform using a model recognized for its simplicity. To prove this thesis, we refer to the eXplicit Multi-Threading (XMT) architecture designed and built at the University of Maryland. XMT is an attempt at re-inventing parallel computing with a solid theoretical foundation and an aggressive scalable design. Algorithmically, XMT is inspired by the PRAM (Parallel Random Access Machine) model and the architecture design is focused on reducing inter-task communication and synchronization overheads and providing an easy-to-program parallel model. This thesis builds upon the existing XMT infrastructure to improve support for efficient execution with a focus on ease-of-programming. Our contributions aim at reducing the programmer's effort in developing XMT applications and improving the overall performance. More concretely, we: (1) present a work-flow guiding programmers to produce efficient parallel solutions starting from a high-level problem; (2) introduce an analytical performance model for XMT programs and provide a methodology to project running time from an implementation; (3) propose and evaluate RAP -- an improved resource-aware compiler loop prefetching algorithm targeted at fine-grained many-core architectures; we demonstrate performance improvements of up to 34.79% on average over the GCC loop prefetching implementation and up to 24.61% on average over a simple hardware prefetching scheme; and (4) implement a number of parallel benchmarks and evaluate the overall performance of XMT relative to existing serial and parallel solutions, showing speedups of up to 13.89x vs.~ a serial processor and 8.10x vs.~parallel code optimized for an existing many-core (GPU). We also discuss the implementation and optimization of the Max-Flow algorithm on XMT, a problem which is among the more advanced in terms of complexity, benchmarking and research interest in the parallel algorithms community. We demonstrate better speed-ups compared to a best serial solution than previous attempts on other parallel platforms
    corecore