4,591 research outputs found

    Peak to average power ratio reduction in NC–OFDM systems

    Get PDF
    Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems

    Over-the-air computation for cooperative wideband spectrum sensing and performance analysis

    Get PDF
    For sensor network aided cognitive radio, cooperative wideband spectrum sensing can distribute the sampling and computing pressure of spectrum sensing to multiple sensor nodes (SNs) in an efficient way. However, this may incur high latency due to distributed data aggregation, especially when the number of SNs is large. In this paper, we propose a novel cooperative wideband spectrum sensing scheme using over-the-air computation. Its key idea is to utilize the superposition property of wireless channel to implement the summation of Fourier transform. This avoids distributed data aggregation by computing the target function directly. The performance of the proposed scheme is analyzed with imperfect synchronization between different SNs. Furthermore, a synchronization phase offset (SPO) estimation and equalization method is proposed. The corresponding performance after equalization is also derived. A working prototype based on universal software radio periphera (USRP) and Monte Carlo simulation is built to verify the performance of the proposed scheme

    Deep Predictive Coding Neural Network for RF Anomaly Detection in Wireless Networks

    Full text link
    Intrusion detection has become one of the most critical tasks in a wireless network to prevent service outages that can take long to fix. The sheer variety of anomalous events necessitates adopting cognitive anomaly detection methods instead of the traditional signature-based detection techniques. This paper proposes an anomaly detection methodology for wireless systems that is based on monitoring and analyzing radio frequency (RF) spectrum activities. Our detection technique leverages an existing solution for the video prediction problem, and uses it on image sequences generated from monitoring the wireless spectrum. The deep predictive coding network is trained with images corresponding to the normal behavior of the system, and whenever there is an anomaly, its detection is triggered by the deviation between the actual and predicted behavior. For our analysis, we use the images generated from the time-frequency spectrograms and spectral correlation functions of the received RF signal. We test our technique on a dataset which contains anomalies such as jamming, chirping of transmitters, spectrum hijacking, and node failure, and evaluate its performance using standard classifier metrics: detection ratio, and false alarm rate. Simulation results demonstrate that the proposed methodology effectively detects many unforeseen anomalous events in real time. We discuss the applications, which encompass industrial IoT, autonomous vehicle control and mission-critical communications services.Comment: 7 pages, 7 figures, Communications Workshop ICC'1
    • …
    corecore