11,363 research outputs found

    MULTI USER COOPERATION SPECTRUM SENSING IN WIRELESS COGNITIVE RADIO NETWORKS

    Get PDF
    With the rapid proliferation of new wireless communication devices and services, the demand for the radio spectrum is increasing at a rapid rate, which leads to making the spectrum more and more crowded. The limited available spectrum and the inefficiency in the spectrum usage have led to the emergence of cognitive radio (CR) and dynamic spectrum access (DSA) technologies, which enable future wireless communication systems to exploit the empty spectrum in an opportunistic manner. To do so, future wireless devices should be aware of their surrounding radio environment in order to adapt their operating parameters according to the real-time conditions of the radio environment. From this viewpoint, spectrum sensing is becoming increasingly important to new and future wireless communication systems, which is designed to monitor the usage of the radio spectrum and reliably identify the unused bands to enable wireless devices to switch from one vacant band to another, thereby achieving flexible, reliable, and efficient spectrum utilisation. This thesis focuses on issues related to local and cooperative spectrum sensing for CR networks, which need to be resolved. These include the problems of noise uncertainty and detection in low signal to noise ratio (SNR) environments in individual spectrum sensing. In addition to issues of energy consumption, sensing delay and reporting error in cooperative spectrum sensing. In this thesis, we investigate how to improve spectrum sensing algorithms to increase their detection performance and achieving energy efficiency. To this end, first, we propose a new spectrum sensing algorithm based on energy detection that increases the reliability of individual spectrum sensing. In spite of the fact that the energy detection is still the most common detection mechanism for spectrum sensing due to its simplicity. Energy detection does not require any prior knowledge of primary signals, but has the drawbacks of threshold selection, and poor performance due to noise uncertainty especially at low SNR. Therefore, a new adaptive optimal energy detection algorithm (AOED) is presented in this thesis. In comparison with the existing energy detection schemes the detection performance achieved through AOED algorithm is higher. Secondly, as cooperative spectrum sensing (CSS) can give further improvement in the detection reliability, the AOED algorithm is extended to cooperative sensing; in which multiple cognitive users collaborate to detect the primary transmission. The new combined approach (AOED and CSS) is shown to be more reliable detection than the individual detection scheme, where the hidden terminal problem can be mitigated. Furthermore, an optimal fusion strategy for hard-fusion based cognitive radio networks is presented, which optimises sensing performance. Thirdly, the need for denser deployment of base stations to satisfy the estimated high traffic demand in future wireless networks leads to a significant increase in energy consumption. Moreover, in large-scale cognitive radio networks some of cooperative devices may be located far away from the fusion centre, which causes an increase in the error rate of reporting channel, and thus deteriorating the performance of cooperative spectrum sensing. To overcome these problems, a new multi-hop cluster based cooperative spectrum sensing (MHCCSS) scheme is proposed, where only cluster heads are allowed to send their cluster results to the fusion centre via successive cluster heads, based on higher SNR of communication channel between cluster heads. Furthermore, in decentralised CSS as in cognitive radio Ad Hoc networks (CRAHNs), where there is no fusion centre, each cognitive user performs the local spectrum sensing and shares the sensing information with its neighbours and then makes its decision on the spectrum availability based on its own sensing information and the neighbours’ information. However, cooperation between cognitive users consumes significant energy due to heavy communications. In addition to this, each CR user has asynchronous sensing and transmission schedules which add new challenges in implementing CSS in CRAHNs. In this thesis, a new multi-hop cluster based CSS scheme has been proposed for CRAHNs, which can enhance the cooperative sensing performance and reduce the energy consumption compared with other conventional decentralised cooperative spectrum sensing modes

    Un nuevo esquema de agrupación para redes sensoras inalámbricas de radio cognitivas heterogéneas

    Get PDF
    Introduction: This article is the product of the research “Learning-based Spectrum Analysis and Prediction in Cognitive Radio Sensor Networks”, developed at Sejong University in the year 2019. Problem: Most of the clustering schemes for distributed cognitive radio-enabled wireless sensor networks consider homogeneous cognitive radio-enabled wireless sensors. Many clustering schemes for such homogeneouscognitive radio-enabled wireless sensor networks waste resources and suffer from energy inefficiency because of the unnecessary overheads. Objective: The objective of the research is to propose a node clustering scheme that conserves energy and prolongs network lifetime. Methodology: A heterogeneous cognitive radio-enabled wireless sensor network in which only a few nodes have a cognitive radio module and the other nodes are normal sensor nodes. Along with the hardware cost, theproposed scheme is efficient in energy consumption. Results: We simulated the proposed scheme and compared it with the homogeneous cognitive radio-enabled wireless sensor networks. The results show that the proposed scheme is efficient in terms of energyconsumption. Conclusion: The proposed node clustering scheme performs better in terms of network energy conservation and network partition. Originality: There are heterogeneous node clustering schemes in the literature for cooperative spectrum sensing and energy efficiency, but to the best of our knowledge, there is no study that proposes a non-cognitiveradio-enabled sensor clustering for energy conservation along with cognitive radio-enabled wireless sensors. Limitations: The deployment of the proposed special device for cognitive radio-enabled wireless sensors is complicated and requires special hardware with better battery powered cognitive sensor nodes

    Energy efficient cooperative spectrum sensing techniques in cognitive radio networks.

    Get PDF
    Master of Science in Electronic Engineering. University of KwaZulu-Natal, Durban 2017.The demand for spectrum is increasing particularly due to the accelerating growth in wireless data traffic generated by smart phones, tablets and other internet access devices. Most of prime spectrum is already licensed. The licensed spectrum is underutilized or used inefficiently, i.e. spectrum sits idle at any given time and location. Opportunistic Spectrum Access (OSA) is proposed as a solution to provide access to the temporarily unused spectrum commonly known as white spaces to improve spectrum utilization, increase spectrum efficiency and reduce spectrum scarcity. The aim of this research is to investigate potential impact of cooperative spectrum sensing techniques technologies on spectrum management. To fulfill this we focused on two spectrum sensing techniques namely; Firstly energy efficient statistical cooperative spectrum sensing in cognitive radio networks, this work exploits the higher order statistical (HOS) tests to detect the status of PU signal by a group of SUs. Secondly, an optimal energy based cooperative spectrum sensing in cognitive radio networks was investigated. In this work the performance of optimal hard fusion rules are employed in SU’s selection criteria and fusion of the decisions under Gaussian channel and Rayleigh channels. To optimize on the energy a two stage fusion and selection strategy is adopted to minimize the number of collaborating SUs

    A Coalition Formation Game for Cooperative Spectrum Sensing in Cognitive Radio Network under the Constraint of Overhead

    Get PDF
    Cooperative spectrum sensing improves the sensing performance of secondary users by exploiting spatial diversity in cognitive radio networks. However, the cooperation of secondary users introduces some overhead also that may degrade the overall performance of cooperative spectrum sensing.  The trade-off between cooperation gain and overhead plays a vital role in modeling cooperative spectrum sensing.  This paper considers overhead in terms of reporting energy and reporting time. We propose a cooperative spectrum sensing based coalitional game model where the utility of the game is formulated as a function of throughput gain and overhead. To achieve a rational average throughput of secondary users, the overhead incurred is to be optimized. This work emphasizes on optimization of the overhead incurred. In cooperative spectrum sensing, the large number of cooperating users improve the detection performance, on the contrary, it increases overhead too. So, to limit the maximum coalition size we propose a formulation under the constraint of the probability of false alarm. An efficient fusion center selection scheme and an algorithm to select eligible secondary users for reporting are proposed to reduce the reporting overhead. We also outline a distributed cooperative spectrum sensing algorithm using the properties of the coalition formation game and prove that the utility of the proposed game has non-transferable properties.  The simulation results show that the proposed schemes reduce the overhead of reporting without compromising the overall detection performance of cooperative spectrum sensing

    Energy-Efficient Cooperative Spectrum Sensing based on Stochastic Programming in Dynamic Cognitive Radio Sensor Networks Normal

    Get PDF
    Nowadays, Cognitive Radio Sensor Networks (CRSN) arise as an emergent technology to deal with the spectrum scarcity issue and the focus is on devising novel energy-efficient solutions. In static CRSN, where nodes have spatial fixed positions, several reported solutions are implemented via sensor selection strategies to reduce consumed energy during cooperative spectrum sensing. However, energy-efficient solutions for dynamic CRSN, where nodes are able to change their spatial positions due to their movement, are nearly reported despite today's growing applications of mobile networks. This paper investigates a novel framework to optimally predict energy consumption in cooperative spectrum sensing tasks, considering node mobility patterns suitable to model dynamic CRSN. A solution based on the Kataoka criterion is presented, that allows to minimize the consumed energy. It accurately estimates -with a given probability-the spent energy on the network, then to derive an optimal energy-efficient solution. An algorithm of reduced-complexity is also implemented to determine the total number of active nodes improving the exhaustive search method. Proper performance of the proposed strategy is illustrated by extensive simulation results for pico-cells and femto-cells in dynamic scenarios.This work was supported in part by the DICYT Project, Direction of Research, Development and Innovation, Universidad de Santiago de Chile, USACH, under Grant 061813KC, in part by the CONICYT-PFCHA/Doctorado Nacional/2016-21160292, and in part by the Spanish National Project TERESA-ADA (MINECO/AEI/FEDER, UE) under Grant TEC2017-90093-C3-2-R

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model
    corecore