294 research outputs found

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Shadow Price Guided Genetic Algorithms

    Get PDF
    The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed

    免疫学的および進化的アルゴリズムに基づく改良された群知能最適化に関する研究

    Get PDF
    富山大学・富理工博甲第175号・楊玉・2020/3/24富山大学202

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    Parameter Optimization of Genetic Algorithm Utilizing Taguchi Design for Gliding Trajectory Optimization of Missile

    Get PDF
    The present study aims to establish a genetic algorithm (GA) method to optimize gliding trajectory of a missile. The trajectory is optimized by discretizing the angle of attack (AOA) and solving optimal control problem to achieve maximum gliding range. GA is employed to resolve the optimal control problem to achieve optimized AOA. A Taguchi’s design of experiments was proposed contrary to full factorial method to ascertain the GA parameters. The experiments have been designed as per Taguchi’s design of experiments using L27 orthogonal array. Systematic reasoning ability of Taguchi method is exploited to obtain better selection, crossover and mutation operations and consequently, enhance the performance of GA for gliding trajectory optimization. The effects of GA parameters on gliding trajectory optimization are studied and analysis of variance (ANOVA) is carried out to evaluate significance factors on the results. Crossover function and population size are observed as highly impacting parameter in missile trajectory optimization accompanied by selection method, crossover fraction, mutation rate and number of generations. Artificial neural network (ANN) method was also applied to predict the significance of GA parameters. The results show that the gliding range is maximized after GA parameter tuning. Simulation results also portrayed that with optimal AOA, gliding distance of missile is improved compared to earlier one. The numerical simulation shows the efficiency of proposed procedure via various test scenarios

    IEEE Access special section editorial: collaboration for Internet of Things

    Get PDF
    The network of objects/things embedded with electronics, software, sensors, and network connectivity, Internet of Things (IoT), creates many exciting applications (e.g., smart grids, smart homes, and smart cities) by enabling objects/things to collect and exchange data so that they can be sensed and controlled. To fulfill IoT, one essential step is to connect various objects/things (e.g., mobile phones, cars, and buildings) so that they can "talk" to each other (i.e., collect and exchange data). However, substantial case studies show that simply connecting them without further collaboration among the objects/things when "talking" to each other leads to unnecessary energy consumption, uncertain security, unstable performance, etc., for IoT. Therefore, collaboration for IoT is very important. Specifically, there are a lot of critical issues to consider in terms of how to achieve robust collaboration among the objects/things for IoT. For instance, how to conduct collaboration among the objects/things so that more energy-efficient communication can be achieved for IoT? How to conduct collaboration among the objects/things so that computing with higher performance can be achieved for IoT? How to improve the security of IoT with collaboration among the objects/things? How to enhance the Quality of Service of IoT with collaboration among the objects/things? How to minimize the overhead costs when objects/things are collaborating in IoT

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    corecore