6,504 research outputs found

    Scalable Spectrum Allocation for Large Networks Based on Sparse Optimization

    Full text link
    Joint allocation of spectrum and user association is considered for a large cellular network. The objective is to optimize a network utility function such as average delay given traffic statistics collected over a slow timescale. A key challenge is scalability: given nn Access Points (APs), there are O(2n)O(2^n) ways in which the APs can share the spectrum. The number of variables is reduced from O(2n)O(2^n) to O(nk)O(nk), where kk is the number of users, by optimizing over local overlapping neighborhoods, defined by interference conditions, and by exploiting the existence of sparse solutions in which the spectrum is divided into k+1k+1 segments. We reformulate the problem by optimizing the assignment of subsets of active APs to those segments. An â„“0\ell_0 constraint enforces a one-to-one mapping of subsets to spectrum, and an iterative (reweighted â„“1\ell_1) algorithm is used to find an approximate solution. Numerical results for a network with 100 APs serving several hundred users show the proposed method achieves a substantial increase in total throughput relative to benchmark schemes.Comment: Submitted to the IEEE International Symposium on Information Theory (ISIT), 201
    • …
    corecore