2,894 research outputs found

    Minimum power multicasting with delay bound constraints in Ad Hoc wireless networks

    Get PDF
    In this paper, we design a new heuristic for an important extension of the minimum power multicasting problem in ad hoc wireless networks. Assuming that each transmission takes a fixed amount of time, we impose constraints on the number of hops allowed to reach the destination nodes in the multicasting application. This setting would be applicable in time critical or real time applications, and the relative importance of the nodes may be indicated by these delay bounds. We design a filtered beam search procedure for solving this problem. The performance of our algorithm is demonstrated on numerous test cases by benchmarking it against an optimal algorithm in small problem instances, and against a modified version of the well-known Broadcast Incremental Power (BIP) algorithm 20 for relatively large problems

    Self-Stabilizing TDMA Algorithms for Dynamic Wireless Ad-hoc Networks

    Get PDF
    In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for DynWANs that need to be autonomous and robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and low communication delay in the presence of frequent topological changes to the communication network. Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements, such as the above. Besides the contribution in the algorithmic front of research, we expect that our proposal can enable quicker adoption by practitioners and faster deployment of DynWANs that are subject changes in the network topology

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Low-Complexity Energy-Efficient Broadcasting in One-Dimensional Wireless Networks

    Full text link
    In this paper, we investigate the transmission range assignment for N wireless nodes located on a line (a linear wireless network) for broadcasting data from one specific node to all the nodes in the network with minimum energy. Our goal is to find a solution that has low complexity and yet performs close to optimal. We propose an algorithm for finding the optimal assignment (which results in the minimum energy consumption) with complexity O(N^2). An approximation algorithm with complexity O(N) is also proposed. It is shown that, for networks with uniformly distributed nodes, the linear-time approximate solution obtained by this algorithm on average performs practically identical to the optimal assignment. Both the optimal and the suboptimal algorithms require the full knowledge of the network topology and are thus centralized. We also propose a distributed algorithm of negligible complexity, i.e., with complexity O(1), which only requires the knowledge of the adjacent neighbors at each wireless node. Our simulations demonstrate that the distributed solution on average performs almost as good as the optimal one for networks with uniformly distributed nodes.Comment: 17 page

    Dynamic master selection in wireless networks

    Get PDF
    Abstract. Mobile wireless networks need to maximize their network lifetime (defined as the time until the first node runs out of energy). In the broadcast network lifetime problem, all nodes are sending broadcast traffic, and one asks for an assignment of transmit powers to nodes, and for sets of relay nodes so that the network lifetime is maximized. The selection of a dynamic relay set consisting of a single node (the ‘master’), can be regarded as a special case, providing lower bounds to the optimal lifetime in the general setting. This paper provides a first analysis of a ‘dynamic master selection’ algorithm

    Increasing network lifetime by battery-aware master selection in radio networks

    Get PDF
    Mobile wireless communication systems often need to maximize their network lifetime (defined as the time until the first node runs out of energy). In the broadcast network lifetime problem, all nodes are sending broadcast traffic, and one asks for an assignment of transmit powers to nodes, and for sets of relay nodes so that the network lifetime is maximized. The selection of a relay set consisting of a single node (the ‘master’), can be regarded as a special case of this problem. We provide a mean value analysis of algorithms controlling the selection of a master node with the objective of maximizing the network lifetime. The results show that already for small networks simple algorithms can extend the average network lifetime considerably

    Deterministic Digital Clustering of Wireless Ad Hoc Networks

    Full text link
    We consider deterministic distributed communication in wireless ad hoc networks of identical weak devices under the SINR model without predefined infrastructure. Most algorithmic results in this model rely on various additional features or capabilities, e.g., randomization, access to geographic coordinates, power control, carrier sensing with various precision of measurements, and/or interference cancellation. We study a pure scenario, when no such properties are available. As a general tool, we develop a deterministic distributed clustering algorithm. Our solution relies on a new type of combinatorial structures (selectors), which might be of independent interest. Using the clustering, we develop a deterministic distributed local broadcast algorithm accomplishing this task in O(ΔlogNlogN)O(\Delta \log^*N \log N) rounds, where Δ\Delta is the density of the network. To the best of our knowledge, this is the first solution in pure scenario which is only polylog(n)(n) away from the universal lower bound Ω(Δ)\Omega(\Delta), valid also for scenarios with randomization and other features. Therefore, none of these features substantially helps in performing the local broadcast task. Using clustering, we also build a deterministic global broadcast algorithm that terminates within O(D(Δ+logN)logN)O(D(\Delta + \log^* N) \log N) rounds, where DD is the diameter of the network. This result is complemented by a lower bound Ω(DΔ11/α)\Omega(D \Delta^{1-1/\alpha}), where α>2\alpha > 2 is the path-loss parameter of the environment. This lower bound shows that randomization or knowledge of own location substantially help (by a factor polynomial in Δ\Delta) in the global broadcast. Therefore, unlike in the case of local broadcast, some additional model features may help in global broadcast

    Randomized Initialization of a Wireless Multihop Network

    Full text link
    Address autoconfiguration is an important mechanism required to set the IP address of a node automatically in a wireless network. The address autoconfiguration, also known as initialization or naming, consists to give a unique identifier ranging from 1 to nn for a set of nn indistinguishable nodes. We consider a wireless network where nn nodes (processors) are randomly thrown in a square XX, uniformly and independently. We assume that the network is synchronous and two nodes are able to communicate if they are within distance at most of rr of each other (rr is the transmitting/receiving range). The model of this paper concerns nodes without the collision detection ability: if two or more neighbors of a processor uu transmit concurrently at the same time, then uu would not receive either messages. We suppose also that nodes know neither the topology of the network nor the number of nodes in the network. Moreover, they start indistinguishable, anonymous and unnamed. Under this extremal scenario, we design and analyze a fully distributed protocol to achieve the initialization task for a wireless multihop network of nn nodes uniformly scattered in a square XX. We show how the transmitting range of the deployed stations can affect the typical characteristics such as the degrees and the diameter of the network. By allowing the nodes to transmit at a range r= \sqrt{\frac{(1+\ell) \ln{n} \SIZE}{\pi n}} (slightly greater than the one required to have a connected network), we show how to design a randomized protocol running in expected time O(n3/2log2n)O(n^{3/2} \log^2{n}) in order to assign a unique number ranging from 1 to nn to each of the nn participating nodes
    corecore