627 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Preamble-Based Medium Access in Wireless Sensor Networks

    Get PDF

    Improving latency in Crankshaft - An energy-aware MAC protocol for Wireless Sensor Networks

    Get PDF
    Due to the dramatic growth in the use of Wireless Sensor Network (WSN) applications - ranging from environment and habitat monitoring to tracking and surveillance, network research in WSN protocols has been very active in the last decade. With battery-powered sensors operating in unattended environments, energy conservation becomes the key technique for improving WSN lifetimes. WSN Medium Access Control (MAC) protocols address energy awareness and reduced duty cycles since the radio is the component that consumes most of the energy. This thesis investigates the performance of two recently published energy-aware MAC protocols, Crankshaft and SCP-MAC. Crankshaft has been shown to be one of the best protocols in terms of energy consumption in dense WSNs while SCP-MAC has a dedicated low duty cycle and low average latencies. The focus of this investigation is to discover techniques for reducing the latency of Crankshaft. Using OMNeT++, an open source and component-based simulation framework, this study investigates possible modifications to Crankshaft to improve its latency. The potential improvements considered include modifications to Crankshaft’s retransmission contention scheme (Sift), adjustments to its inherent settings, and investigating the impact of ACKs. Since OMNeT++ readily provided only a variant of SCP-MAC identified as SCP-MAC*, the simulations results presented involve comparing variants of both protocols (Crankshaft and SCP-MAC*). The performance of these protocols is also analyzed using distinct sensor node communication patterns. It was determined that Crankshaft’s latency depends on its ACK/Retransmission settings. Specifically, Crankshaft has the best latency with No ACKs, without much loss in energy consumption. But the latency can also be improved when ACKs are enabled by reducing the number of retries. Furthermore, the latency and delivery ratio are also directly governed by the WSN traffic pattern and the congestion in the network, as there was a noticeable improvement for both parameters in one-hop traffic, compared to multi-hop convergecast traffic to the sink. Finally, it was observed that Crankshaft’s broadcast performance in flooding traffic can be improved by increasing the number of broadcast slots used, though this is detrimental to its performance in unicast traffic

    Design and implementation of application-specific medium access control protocol for scalable smart home embedded systems

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016By incorporating electrical devices, appliances and house features in a system that is controlled and monitored either remotely or on-site, smart home technologies have recently gained an increasing popularity. There are several smart home systems already available, ranging from simple on-site home monitoring to self-learning and Wi-Fi enabled systems. However, current systems do not fully make use of recent technological advancement and synergy among a variable number of sensors for improved data collection. For a synergistic system to be provident it needs to be modular and scalable to match exact user needs (type of applications and adequate number of sensors for each application). With an increased number of sensors intelligently placed to optimize the data collection, a wireless network is indispensable for a flexible and inexpensive installation. Such a network requires an efficient medium access control protocol to sustain a reliable system, provide flexibility in design and to achieve lower power consumption. This thesis brings to light practical ways to improve current smart home systems. As the main contribution of this work, we introduce a novel application-specific medium access control protocol able to support suggested improvements. In addition, a smart home prototype system is implemented to evaluate the protocol performance and prove concepts of recommended advances. This thesis covers the design of the proposed novel medium access protocol and the software/hardware implementation of the prototype system focusing on the monitoring and data analysis side, while providing inputs for the control side of the system. The smart home system prototype is Wi-Fi and Web connected, designed and implemented to emphasize system usability and energy efficiency

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Power Optimization for Wireless Sensor Networks

    Get PDF
    • …
    corecore