368 research outputs found

    Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Get PDF
    The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead

    Performance Analysis of Priority-Based IEEE 802.15.6 Protocol in Saturated Traffic Conditions

    Get PDF
    Recent advancement in internet of medical things has enabled deployment of miniaturized, intelligent, and low-power medical devices in, on, or around a human body for unobtrusive and remote health monitoring. The IEEE 802.15.6 standard facilitates such monitoring by enabling low-power and reliable wireless communication between the medical devices. The IEEE 802.15.6 standard employs a carrier sense multiple access with collision avoidance protocol for resource allocation. It utilizes a priority-based backoff procedure by adjusting the contention window bounds of devices according to user requirements. As the performance of this protocol is considerably affected when the number of devices increases, we propose an accurate analytical model to estimate the saturation throughput, mean energy consumption, and mean delay over the number of devices. We assume an error-prone channel with saturated traffic conditions. We determine the optimal performance bounds for a fixed number of devices in different priority classes with different values of bit error ratio. We conclude that high-priority devices obtain quick and reliable access to the error-prone channel compared to low-priority devices. The proposed model is validated through extensive simulations. The performance bounds obtained in our analysis can be used to understand the tradeoffs between different priority levels and network performance.info:eu-repo/semantics/publishedVersio

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    Get PDF
    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient

    Towards zero-power wireless machine-to-machine networks

    Get PDF
    This thesis aims at contributing to overcome two of the main challenges for the deployment of M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the channel; and the need to extend the network lifetime. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of MAC protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC protocols. While the Frame Slotted-ALOHA (FSA) protocol has been traditionally adopted in star topology networks for data collection, results show that FSA-based protocols lack of scalability and present synchronization problems as the network density increases. Indeed, the frame length of FSA must be adjusted to the number of contenders, which may be complex to attain in dense networks with large and dynamic number of end-devices. In order to overcome these issues, a tree splitting-based random access protocol, referred to as Low Power Contention Tree-based Access (LP-CTA), is proposed in the first part of this thesis. In LP-CTA, the frame length can be very short and fixed, which facilitates synchronization and provides better network scalability than FSA. While LP-CTA uses data slots for contention, it is possible to use short access requests in minislots, where collisions are resolved using tree splitting, and avoid the contention in data. Since these minislots can be much shorter than the duration of a data packet, the performance can be improved. The Low Power Distributed Queuing (LP-DQ) protocol proposed in this thesis is based on this idea. LP-DQ combines tree splitting with the logic of two distributed queues that manage the contention resolution and the collision-free data transmission. Results show that LP-DQ outperforms LP-CTA and FSA in terms of delay and energy efficiency, and it relaxes the need to know the size of the network and adapts smoothly to any change in the number of end-devices. The approach of LP-DQ is convenient when the messages transmitted by each end-device fit in one single slot, however, if the end-devices generate long messages that have to be fragmented, it is better to add a reservation mechanism in order to boost the performance. In this sense, the LPR-DQ protocol is proposed as an extension of LP-DQ where the concept of reservation is integrated to allow the end-devices reserve as many collision-free slots as needed. The second part of the thesis is devoted to the integration of the MAC layer with the use of energy harvesting. The variability and fluctuations of the harvested energy is considered for the design of EH-aware MAC protocols and three performance metrics are proposed: the probability of delivery, the data delivery ratio and the time efficiency. Previous works on data collection networks with EH focus on DFSA. In this thesis, the EH-CTA protocol is proposed as an adaptation of LP-CTA that takes the energy harvesting process into account. Results show that EH-CTA outperforms DFSA if the energy threshold for an end-device to become active is properly configured. In addition, while DFSA needs to adapt the frame length dynamically, EH-CTA uses a fixed frame length, thus facilitating scalability and synchronization. Finally, the EH-RDFSA and EH-DQ protocols are proposed for scenarios where data must be fragmented. EH-RDFSA is a combination of RFSA and DFSA, and EH-DQ is an extension of LPR-DQ.Esta tesis contribuye a resolver dos de los retos para el despliegue de redes M2M en escenarios de recolección de datos para el Internet de las Cosas: la gestión del acceso al canal de un número masivo de dispositivos; y la necesidad de extender la vida de la red. Para resolverlos se consideran dos estrategias complementarias. En primer lugar, se centra en el diseño, el análisis y la evaluación de protocolos MAC que pueden manejar transiciones abruptas de tráfico y reducen el consumo de energía. Y en segundo lugar, se considera el uso de mecanismos de captura de energía (Energy Harvesters, EH) para ofrecer un tiempo de vida ilimitado de la red. Con este fin, la segunda parte de la tesis se centra en el diseño y el análisis de protocolos MAC de tipo "EH-aware". Mientras que Frame Slotted-ALOHA (FSA) ha sido tradicionalmente adoptado en aplicaciones de recolección de datos, los resultados muestran que FSA presenta problemas de escalabilidad y sincronización cuando aumenta la densidad de la red. De hecho, la longitud de trama de FSA se debe ajustar según sea el número de dispositivos, lo cual puede ser difícil de estimar en redes con un número elevado y dinámico de dispositivos. Para superar estos problemas, en esta tesis se propone un protocolo de acceso aleatorio basado en "tree-splitting" denominado Low Power Contention Tree-based Access (LP-CTA). En LP-CTA, la longitud de trama puede ser corta y constante, lo cual facilita la sincronización y proporciona mejor escalabilidad. Mientras que LP-CTA utiliza paquetes de datos para la contienda, es posible utilizar solicitudes de acceso en mini-slots, donde las colisiones se resuelven utilizando "tree-splitting", y evitar la contención en los datos. Dado que estos mini-slots pueden ser mucho más cortos que la duración de un slot de datos, el rendimiento de LP-CTA puede ser mejorado. El protocolo Low Power Distributed Queuing (LP-DQ) propuesto en esta tesis se basa en esta idea. LP-DQ combina "tree-splitting" con la lógica de dos colas distribuidas que gestionan la resolución de la contienda en la solicitud de acceso y la transmisión de datos libre de colisiones. Los resultados demuestran que LP-DQ mejora LP-CTA y FSA en términos de retardo y eficiencia energética, LP-DQ no requiere conocer el tamaño de la red y se adapta sin problemas a cualquier cambio en el número de dispositivos. LP-DQ es conveniente cuando los mensajes transmitidos por cada dispositivo caben en un único slot de datos, sin embargo, si los dispositivos generan mensajes largos que requieren fragmentación, es mejor añadir un mecanismo de reserva para aumentar el rendimiento. En este sentido, el protocolo LPR-DQ se propone como una extensión de LP-DQ que incluye un mecanismo de reserva para permitir que cada dispositivo reserve el número de slots de datos según sea el número de fragmentos por mensaje. La segunda parte de la tesis está dedicada a la integración de la capa MAC con el uso de "Energy Harvesters". La variabilidad y las fluctuaciones de la energía capturada se consideran para el diseño de protocolos MAC de tipo "EH-aware" y se proponen tres métricas de rendimiento: la probabilidad de entrega, el "Data Delivery Ratio" y la eficiencia temporal. Los trabajos previos en redes de recolección de datos con EH se centran principalmente en DFSA. En esta tesis, el protocolo EH-CTA se propone como una adaptación de LP-CTA que tiene en cuenta el proceso de captura de energía. Los resultados muestran que EH-CTA supera DFSA si el umbral de energía para que un dispositivo se active está configurado correctamente. Además, mientras que en DFSA se necesita adaptar la longitud de trama de forma dinámica, EH-CTA utiliza una longitud de trama fija, facilitando así la escalabilidad y la sincronización. Por último, se proponen los protocolos EH-RDFSA y EH-DQ para escenarios en los que los datos deben ser fragmentados. EH-RDFSA es una combinación de RFSA y DFSA, y EH-DQ es una extensión de LPR-DQ.Aquesta tesi contribueix a resoldre dos dels reptes per al desplegament de xarxes M2M en escenaris de recol·lecció de dades per a l'Internet de les Coses: la gestió de l'accés al canal d'un nombre massiu de dispositius; i la necessitat d'extendre la vida de la xarxa. Per resoldre'ls es consideren dues estratègies complementàries. En primer lloc, es centra en el disseny, l'anàlisi i l'avaluació de protocols MAC que poden manegar transicions abruptes de trànsit i redueixen el consum d'energia. I en segon lloc, es considera l'ús de mecanismes de captura d'energia (Energy Harvesters, EH) per a oferir un temps de vida il·limitat de la xarxa. Amb aquesta finalitat, la segona part de la tesi es centra en el disseny i l'anàlisi de protocols MAC de tipus "EH-aware".Mentre que Frame Slotted-ALOHA (FSA) ha estat tradicionalment adoptat en aplicacions de recol·lecció de dades, els resultats mostren que FSA presenta problemes d'escalabilitat i sincronització quan augmenta la densitat de la xarxa. De fet, la longitud de trama de FSA s'ha d'ajustar segons sigui el nombre de dispositius, la qual cosa pot ser difícil d'estimar en xarxes amb un nombre elevat i dinàmic de dispositius. Per superar aquests problemes, en aquesta tesi es proposa un protocol d'accés aleatori basat en "tree-splitting" denominat Low Power Contention Tree-based Access (LP-CTA). En LP-CTA, la longitud de trama pot ser curta i constant, la qual cosa facilita la sincronització i proporciona millor escalabilitat.Mentre que LP-CTA utilitza paquets de dades per a la contenció, és possible utilitzar sol·licituds d'accés a mini-slots, on les col·lisions es resolen utilitzant "tree-splitting", i evitar la contenció a les dades. Atès que aquests mini-slots poden ser molt més curts que la durada d'un slot de dades, el rendiment de LP-CTA pot ser millorat. El protocol Low Power Distributed Queuing (LP-DQ) proposat en aquesta tesi es basa en aquesta idea. LP-DQ combina "tree-splitting" amb la lògica de dues cues distribuïdes que gestionen la resolució de la contenció en la sol·licitud d'accés i la transmissió de dades lliure de col·lisions. Els resultats demostren que LP-DQ millora LP-CTA i FSA en termes de retard i eficiència energètica, LP-DQ no requereix conèixer la mida de la xarxa i s'adapta sense problemes a qualsevol canvi en el nombre de dispositius.LP-DQ és convenient quan els missatges transmesos per cada dispositiu caben en un únic slot de dades, però, si els dispositius generen missatges llargs que requereixen fragmentació, és millor afegir un mecanisme de reserva per augmentar el rendiment. En aquest sentit, el protocol LPR-DQ es proposa com una extensió de LP-DQ que inclou un mecanisme de reserva per a permetre que cada dispositiu reservi el nombre de slots de dades segons sigui el nombre de fragments per missatge.La segona part de la tesi està dedicada a la integració de la capa MAC amb l'ús de "Energy Harvesters". La variabilitat i les fluctuacions de l'energia capturada es consideren per al disseny de protocols MAC de tipus "EH-aware" i es proposen tres mètriques de rendiment: la probabilitat d'entrega, el "Data Delivery Ratio" i l'eficiència temporal.Els treballs previs en xarxes de recol·lecció de dades amb EH se centren principalment en DFSA. En aquesta tesi, el protocol EH-CTA es proposa com una adaptació de LP-CTA que té en compte el procés de captura d'energia. Els resultats mostren que EH-CTA supera DFSA si el llindar d'energia perquè un dispositiu s'activi s'ajusta correctament. A més, mentre que a DFSA es necessita adaptar la longitud de trama de forma dinàmica, EH-CTA utilitza una longitud de trama fixa, facilitant així l'escalabilitat i la sincronització. Finalment, es proposen els protocols EH-RDFSA i EH-DQ per a escenaris en els quals les dades han de ser fragmentades. EH-RDFSA és una combinació de RFSA i DFSA, i EH-DQ és una extensió de LPR-DQ.Postprint (published version

    Modelling, analysis and design of MAC and routing protocols for wireless body area sensor networks.

    Get PDF
    The main contribution of the thesis is to provide modeling, analysis, and design for Medium Access Control (MAC) and link-quality based routing protocols of Wireless Body Area Sensor Networks (WBASNs) for remote patient monitoring applications by considering saturated and un-saturated traffic scenarios. The design of these protocols has considered the stringent Quality of Service (QoS) requirements of patient monitoring systems. Moreover, the thesis also provides intelligent routing metrics for packet forwarding mechanisms while considering the integration of WBASNs with the Internet of Things (IoTs). First, we present the numerical modeling of the slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for the IEEE 802.15.4 and IEEE 802.15.6 standards. By using this modelling, we proposed a MAC layer mechanism called Delay, Reliability and Throughput (DRT) profile for the IEEE 802.15.4 and IEEE 802.15.6, which jointly optimize the QoS in terms of limited delay, reliability, efficient channel access and throughput by considering the requirements of patient monitoring system under different frequency bands including 420 MHz, 868 MHz and 2.4 GHz. Second, we proposed a duty-cycle based energy efficient adaptive MAC layer mechanism called Tele-Medicine Protocol (TMP) by considering the limited delay and reliability for patient monitoring systems. The proposed energy efficient protocol is designed by combining two optimizations methods: MAC layer parameter tuning and duty cycle-based optimization. The duty cycle is adjusted by using three factors: offered network traffic load, DRT profile and superframe duration. Third, a frame aggregation scheme called Aggregated-MAC Protocol Data Unit (A- MPDU) is proposed for the IEEE 802.15.4. A-MPDU provides high throughput and efficient channel access mechanism for periodic data transmission by considering the specified QoS requirements of the critical patient monitoring systems. To implement the scheme accurately, we developed a traffic pattern analysis to understand the requirements of the sensor nodes in patient monitoring systems. Later, we mapped the requirements on the existing MAC to find the performance gap. Fourth, empirical reliability assessment is done to validate the wireless channel characteristics of the low-power radios for successful deployment of WBASNs/IoTs based link quality routing protocols. A Test-bed is designed to perform the empirical experiments for the identification of the actual link quality estimation for different hospital environments. For evaluation of the test-bed, we considered parameters including Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), packet reception and packet error rate. Finally, there is no standard under Internet Engineering Task Force (IETF) which provides the integration of the IEEE 802.15.6 with IPv6 networks so that WBASNs could become part of IoTs. For this, an IETF draft is proposed which highlights the problem statement and solution for this integration. The discussion is provided in Appendix B

    Estudi bibliomètric any 2014. Campus del Baix Llobregat: EETAC i ESAB

    Get PDF
    En el present informe s’analitza la producció científica de les dues escoles del Campus del Baix Llobregat, l’Escola d’Enginyeria de Telecomunicació i Aerospacial de Castelldefels (EETAC) i l’Escola Superior d’Agricultura de Barcelona (ESAB) durant el 2014.Postprint (author’s final draft

    Wireless sensor network for health monitoring

    Get PDF
    Wireless Sensor Network (WSN) is becoming a significant enabling technology for a wide variety of applications. Recent advances in WSN have facilitated the realization of pervasive health monitoring for both homecare and hospital environments. Current technological advances in sensors, power-efficient integrated circuits, and wireless communication have allowed the development of miniature, lightweight, low-cost, and smart physiological sensor nodes. These nodes are capable of sensing, processing, and communicating one or more vital signs. Furthermore, they can be used in wireless personal area networks (WPANs) or wireless body sensor networks (WBSNs) for health monitoring. Many studies were performed and/or are under way in order to develop flexible, reliable, secure, real-time, and power-efficient WBSNs suitable for healthcare applications. To efficiently control and monitor a patient’s status as well as to reduce the cost of power and maintenance, IEEE 802.15.4/ZigBee, a communication standard for low-power wireless communication, is developed as a new efficient technology in health monitoring systems. The main contribution of this dissertation is to provide a modeling, analysis, and design framework for WSN health monitoring systems. This dissertation describes the applications of wireless sensor networks in the healthcare area and discusses the related issues and challenges. The main goal of this study is to evaluate the acceptance of the current wireless standard for enabling WSNs for healthcare monitoring in real environment. Its focus is on IEEE 802.15.4/ZigBee protocols combined with hardware and software platforms. Especially, it focuses on Carrier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) algorithms for reliable communication in multiple accessing networks. The performance analysis metrics are established through measured data and mathematical analysis. This dissertation evaluates the network performance of the IEEE 802.15.4 unslotted CSMA/CA mechanism for different parameter settings through analytical modeling and simulation. For this protocol, a Markov chain model is used to derive the analytical expression of normalized packet transmission, reliability, channel access delay, and energy consumption. This model is used to describe the stochastic behavior of random access and deterministic behavior of IEEE 802.15.4 CSMA/CA. By using it, the different aspects of health monitoring can be analyzed. The sound transmission of heart beat with other smaller data packet transmission is studied. The obtained theoretical analysis and simulation results can be used to estimate and design the high performance health monitoring systems

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security
    corecore