307 research outputs found

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    The Reliability Function of Lossy Source-Channel Coding of Variable-Length Codes with Feedback

    Full text link
    We consider transmission of discrete memoryless sources (DMSes) across discrete memoryless channels (DMCs) using variable-length lossy source-channel codes with feedback. The reliability function (optimum error exponent) is shown to be equal to max⁑{0,B(1βˆ’R(D)/C)},\max\{0, B(1-R(D)/C)\}, where R(D)R(D) is the rate-distortion function of the source, BB is the maximum relative entropy between output distributions of the DMC, and CC is the Shannon capacity of the channel. We show that, in this setting and in this asymptotic regime, separate source-channel coding is, in fact, optimal.Comment: Accepted to IEEE Transactions on Information Theory in Apr. 201

    Robust Gaussian Joint Source-Channel Coding Under the Near-Zero Bandwidth Regime

    Full text link
    Minimum power required to achieve a distortion-noise profile, i.e., a function indicating the maximum allowed distortion value for each noise level, is studied for the transmission of Gaussian sources over Gaussian channels under a regime of bandwidth approaching zero. A simple but instrumental lower bound to the minimum required power for a given profile is presented. For an upper bound, a dirty-paper based coding scheme is proposed and its power-distortion tradeoff is analyzed. Finally, upper and lower bounds to the minimum power is analyzed and compared for specific distortion-noise profiles, namely rational profiles with order one and two
    • …
    corecore