480 research outputs found

    MDP-Based Scheduling Design for Mobile-Edge Computing Systems with Random User Arrival

    Full text link
    In this paper, we investigate the scheduling design of a mobile-edge computing (MEC) system, where the random arrival of mobile devices with computation tasks in both spatial and temporal domains is considered. The binary computation offloading model is adopted. Every task is indivisible and can be computed at either the mobile device or the MEC server. We formulate the optimization of task offloading decision, uplink transmission device selection and power allocation in all the frames as an infinite-horizon Markov decision process (MDP). Due to the uncertainty in device number and location, conventional approximate MDP approaches to addressing the curse of dimensionality cannot be applied. A novel low-complexity sub-optimal solution framework is then proposed. We first introduce a baseline scheduling policy, whose value function can be derived analytically. Then, one-step policy iteration is adopted to obtain a sub-optimal scheduling policy whose performance can be bounded analytically. Simulation results show that the gain of the sub-optimal policy over various benchmarks is significant.Comment: 6 pages, 3 figures; accepted by Globecom 2019; title changed to better describe the work, introduction condensed, typos correcte

    Energy and Delay Efficient Computation Offloading Solutions for Edge Computing

    Get PDF
    This thesis collects a selective set of outcomes of a PhD course in Electronics, Telecommunications, and Information Technologies Engineering and it is focused on designing techniques to optimize computational resources in different wireless communication environments. Mobile Edge Computing (MEC) is a novel and distributed computational paradigm that has emerged to address the high users demand in 5G. In MEC, edge devices can share their resources to collaborate in terms of storage and computation. One of the computational sharing techniques is computation offloading, which brings a lot of advantages to the network edge, from lower communication, to lower energy consumption for computation. However, the communication among the devices should be managed such that the resources are exploited efficiently. To this aim, in this dissertation, computation offloading in different wireless environments with different number of users, network traffic, resource availability and devices' location are analyzed in order to optimize the resource allocation at the network edge. To better organize the dissertation, the studies are classified in four main sections. In the first section, an introduction on computational sharing technologies is given. Later, the problem of computation offloading is defined, and the challenges are introduced. In the second section, two partial offloading techniques are proposed. While in the first one, centralized and distributed architectures are proposed, in the second work, an Evolutionary Algorithm for task offloading is proposed. In the third section, the offloading problem is seen from a different perspective where the end users can harvest energy from either renewable sources of energy or through Wireless Power Transfer. In the fourth section, the MEC in vehicular environments is studied. In one work a heuristic is introduced in order to perform the computation offloading in Internet of Vehicles and in the other a learning-based approach based on bandit theory is proposed
    • …
    corecore