32,899 research outputs found

    Memetic Multi-Objective Particle Swarm Optimization-Based Energy-Aware Virtual Network Embedding

    Full text link
    In cloud infrastructure, accommodating multiple virtual networks on a single physical network reduces power consumed by physical resources and minimizes cost of operating cloud data centers. However, mapping multiple virtual network resources to physical network components, called virtual network embedding (VNE), is known to be NP-hard. With considering energy efficiency, the problem becomes more complicated. In this paper, we model energy-aware virtual network embedding, devise metrics for evaluating performance of energy aware virtual network-embedding algorithms, and propose an energy aware virtual network-embedding algorithm based on multi-objective particle swarm optimization augmented with local search to speed up convergence of the proposed algorithm and improve solutions quality. Performance of the proposed algorithm is evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithm improves virtual network embedding by increasing revenue and decreasing energy consumption.Comment: arXiv admin note: text overlap with arXiv:1504.0684

    Online power aware coordinated virtual network embedding with 5G delay constraint

    Get PDF
    Solving virtual network embedding problem with delay constraint is a key challenge to realize network virtualization for current and future 5G core networks. It is an NP-Hard problem, composed of two sub-problems, one for virtual node embedding, and another one for virtual edges embedding, usually solved separately or with a certain level of coordination, which in general could result on rejecting some virtualization requests. Therefore, the main contributions of this paper focused on introducing an online power aware algorithm to solve the virtual network embedding problem using less resources and less power consumption, while considering end-to-end delay as a main embedding constraint. The new algorithm minimizes the overall power of the physical network through efficiently maximizing the utilization of the active infrastructure resources and putting into sleeping mode all non-active ones. Evaluations of the proposed algorithm conducted against the state of art algorithms, and simulation results showed that, when end-to-end delay was not included the proposed online algorithm managed to reduce the total power consumption of the physical network by 23% lower than the online energy aware with dynamic demands VNE algorithm, EAD-VNE. However, when end-to-end delay was included, it significantly influenced the whole embedding process and resulted on reducing the average acceptance ratios by 16% compared to the cases without delay.Peer ReviewedPostprint (published version

    A green energy-aware hybrid virtual network embedding approach

    Get PDF
    © 2015 Published by Elsevier B.V. In the past few years, the concept of network virtualization has received significant attention from industry and research fora, as it represents a promising way to diversify existing networks and ensure the co-existence of heterogeneous network architectures on top of shared substrates. Virtual network embedding (VNE) is the process of dynamically mapping virtual resources (i.e. virtual nodes and links) onto physical substrate resources. VNE is the main resource allocation challenge in network virtualization and is considered as an NP-hard problem. Several centralized and distributed VNE approaches have been proposed, with the aim of satisfying different objectives ranging from QoS, to economical profit, and network survivability. More recently, emerging VNE approaches started investigating the optimization of new objectives such as energy-efficiency and networks\u27 security. In this work, we propose a green energy-aware hybrid VNE hybrid VN embedding approach that aims at achieving energy efficiency and resource consolidation, while minimizing CO2 emissions resulting from VNs operation. This approach consists of a hierarchical virtual networking management architecture in which control and management nodes collaborate for the splitting and embedding of sub-VNs requests to the cleanest substrate resources (i.e. the resources deployed in a sector with the smallest CO2 emission factor) available. Three different variants of our VNE algorithms, taking into consideration different resources\u27 selection criteria (i.e. energy source, request priority, and request location) are presented, and their performance is compared with two existing VNE algorithms based on centralized and distributed embedding approaches. The comparative performance analysis shows that our proposed approach enables a more efficient VN embedding in terms of: a reduced number of substrate resources needed, a faster request mapping time, as well as resource consolidation and reduced resource cost. Furthermore, it enables a reduction of the carbon footprint of the VNE operation, thus resulting in a more green and environmentally conscious approach to network virtualization

    Study, evaluation and contributions to new algorithms for the embedding problem in a network virtualization environment

    Get PDF
    Network virtualization is recognized as an enabling technology for the future Internet. It aims to overcome the resistance of the current Internet to architectural change and to enable a new business model decoupling the network services from the underlying infrastructure. The problem of embedding virtual networks in a substrate network is the main resource allocation challenge in network virtualization and is usually referred to as the Virtual Network Embedding (VNE) problem. VNE deals with the allocation of virtual resources both in nodes and links. Therefore, it can be divided into two sub-problems: Virtual Node Mapping where virtual nodes have to be allocated in physical nodes and Virtual Link Mapping where virtual links connecting these virtual nodes have to be mapped to paths connecting the corresponding nodes in the substrate network. Application of network virtualization relies on algorithms that can instantiate virtualized networks on a substrate infrastructure, optimizing the layout for service-relevant metrics. This class of algorithms is commonly known as VNE algorithms. This thesis proposes a set of contributions to solve the research challenges of the VNE that have not been tackled by the research community. To do that, it performs a deep and comprehensive survey of virtual network embedding. The first research challenge identified is the lack of proposals to solve the virtual link mapping stage of VNE using single path in the physical network. As this problem is NP-hard, existing proposals solve it using well known shortest path algorithms that limit the mapping considering just one constraint. This thesis proposes the use of a mathematical multi-constraint routing framework called paths algebra to solve the virtual link mapping stage. Besides, the thesis introduces a new demand caused by virtual link demands into physical nodes acting as intermediate (hidden) hops in a path of the physical network. Most of the current VNE approaches are centralized. They suffer of scalability issues and provide a single point of failure. In addition, they are not able to embed virtual network requests arriving at the same time in parallel. To solve this challenge, this thesis proposes a distributed, parallel and universal virtual network embedding framework. The proposed framework can be used to run any existing embedding algorithm in a distributed way. Thereby, computational load for embedding multiple virtual networks is spread across the substrate network Energy efficiency is one of the main challenges in future networking environments. Network virtualization can be used to tackle this problem by sharing hardware, instead of requiring dedicated hardware for each instance. Until now, VNE algorithms do not consider energy as a factor for the mapping. This thesis introduces the energy aware VNE where the main objective is to switch off as many network nodes and interfaces as possible by allocating the virtual demands to a consolidated subset of active physical networking equipment. To evaluate and validate the aforementioned VNE proposals, this thesis helped in the development of a software framework called ALgorithms for Embedding VIrtual Networks (ALEVIN). ALEVIN allows to easily implement, evaluate and compare different VNE algorithms according to a set of metrics, which evaluate the algorithms and compute their results on a given scenario for arbitrary parameters

    Virtual Machines Embedding for Cloud PON AWGR and Server Based Data Centres

    Full text link
    In this study, we investigate the embedding of various cloud applications in PON AWGR and Server Based Data Centres
    • …
    corecore