62 research outputs found

    Green and secure computation offloading for cache-enabled IoT networks

    Get PDF
    The ever-increasing number of diverse and computation-intensive Internet of things (IoT) applications is bringing phenomenal growth in global Internet traffic. Mobile devices with limited resource capacity (i.e., computation and storage resources) and battery lifetime are experiencing technical challenges to satisfy the task requirements. Mobile edge computing (MEC) integrated with IoT applications offloads computation-intensive tasks to the MEC servers at the network edge. This technique shows remarkable potential in reducing energy consumption and delay. Furthermore, caching popular task input data at the edge servers reduces duplicate content transmission, which eventually saves associated energy and time. However, the offloaded tasks are exposed to multiple users and vulnerable to malicious attacks and eavesdropping. Therefore, the assignment of security services to the offloaded tasks is a major requirement to ensure confidentiality and privacy. In this article, we propose a green and secure MEC technique combining caching, cooperative task offloading, and security service assignment for IoT networks. The study not only investigates the synergy between energy and security issues, but also offloads IoT tasks to the edge servers without violating delay requirements. A resource-constrained optimization model is formulated, which minimizes the overall cost combining energy consumption and probable security-breach cost. We also develop a two-stage heuristic algorithm and find an acceptable solution in polynomial time. Simulation results prove that the proposed technique achieves notable improvement over other existing strategies

    Cross-layer design for mission-critical IoT in mobile edge computing systems

    Get PDF
    In this paper, we establish a cross-layer framework for optimizing user association, packet offloading rates, and bandwidth allocation for mission-critical Internet-of-Things (MC-IoT) services with short packets in mobile edge computing (MEC) systems, where enhanced mobile broadband (eMBB) services with long packets are considered as background services. To reduce communication delay, the fifth generation new radio is adopted in radio access networks. To avoid long queueing delay for short packets from MC-IoT, processor-sharing (PS) servers are deployed at MEC systems, where the service rate of the server is equally allocated to all the packets in the buffer. We derive the distribution of latency experienced by short packets in closed form, and minimize the overall packet loss probability subject to the end-to-end delay requirement. To solve the nonconvex optimization problem, we propose an algorithm that converges to a near optimal solution when the throughput of eMBB services is much higher than MC-IoT services, and extend it into more general scenarios. Furthermore, we derive the optimal solutions in two asymptotic cases: communication or computing is the bottleneck of reliability. The simulation and numerical results validate our analysis and show that the PS server outperforms first-come-first-serve servers

    An Optimized Multi-Layer Resource Management in Mobile Edge Computing Networks: A Joint Computation Offloading and Caching Solution

    Full text link
    Nowadays, data caching is being used as a high-speed data storage layer in mobile edge computing networks employing flow control methodologies at an exponential rate. This study shows how to discover the best architecture for backhaul networks with caching capability using a distributed offloading technique. This article used a continuous power flow analysis to achieve the optimum load constraints, wherein the power of macro base stations with various caching capacities is supplied by either an intelligent grid network or renewable energy systems. This work proposes ubiquitous connectivity between users at the cell edge and offloading the macro cells so as to provide features the macro cell itself cannot cope with, such as extreme changes in the required user data rate and energy efficiency. The offloading framework is then reformed into a neural weighted framework that considers convergence and Lyapunov instability requirements of mobile-edge computing under Karush Kuhn Tucker optimization restrictions in order to get accurate solutions. The cell-layer performance is analyzed in the boundary and in the center point of the cells. The analytical and simulation results show that the suggested method outperforms other energy-saving techniques. Also, compared to other solutions studied in the literature, the proposed approach shows a two to three times increase in both the throughput of the cell edge users and the aggregate throughput per cluster

    Energy Harvesting based Mobile Cloud Network in Latency and QoS Improvement using 5G Systems by Energy Routing Optimization

    Get PDF
    D2D communication technology enables the User Equipment (UE) in 5G networks to instantly connect with other UEs, with or without partial infrastructure involvement. In a Cloud Assisted energy harvesting system, it has improved user numbers and data transmission between mobile nodes. This research propose energy harvesting for mobile cloud computing in enhancing the QoS and latency of the network. The main aim of this research is to enhance energy optimization using discrete energy efficient offloading algorithm. The routing has been optimized using fuzzy logic cognitive Bellman-Ford routing algorithm. To identify the failing node and find an alternative node to deliver the seamless services, an unique weight-based approach has been presented. The method relies on two working node parameters: execution time and failure rate. Threshold values are specified for the parameters of the chosen master node. By contrasting the values with the threshold values, the alternative node is chosen. The experimental results shows comparative analysis in terms of throughput of 96%, QoS of 96%, latency of 28%, energy consumption of 51%, end-end delay of 41%, average power consumption of 41% and PDR of 85

    Energy-Efficient Design of Satellite-Terrestrial Computing in 6G Wireless Networks

    Full text link
    In this paper, we investigate the issue of satellite-terrestrial computing in the sixth generation (6G) wireless networks, where multiple terrestrial base stations (BSs) and low earth orbit (LEO) satellites collaboratively provide edge computing services to ground user equipments (GUEs) and space user equipments (SUEs) over the world. In particular, we design a complete process of satellite-terrestrial computing in terms of communication and computing according to the characteristics of 6G wireless networks. In order to minimize the weighted total energy consumption while ensuring delay requirements of computing tasks, an energy-efficient satellite-terrestrial computing algorithm is put forward by jointly optimizing offloading selection, beamforming design and resource allocation. Finally, both theoretical analysis and simulation results confirm fast convergence and superior performance of the proposed algorithm for satellite-terrestrial computing in 6G wireless networks

    OFFLOADING DECISION SELECTION METHOD FOR ENERGY EFFICIENCY AND LOW LATENCY IN HETEROGENE SIMUATION ENVIRONMENTS

    Get PDF
    Mobile Cloud Computing (MCC) is a technology that can overcome the problems of high computing and limited resources owned by mobile devices. However, in practice, MCC has a very long transmission distance from the mobile device, resulting in a large latency. Mobile Edge Computing (MEC) is a technology that exists to overcome this problem. However, new problems arise from the presence of this MEC.One of the problems that arise is the selection of offloading decisions from mobile devices. Several studies consider energy efficiency / large latency or both in determining offloading decisions. However, there are not many studies that consider the movement of mobile devices in determining offloading decisions. Even though the movement of mobile devices is also very influential on latency because tasks need to be migrated to another edge server when a mobile device has moved. Several studies that have addressed this issue apply the solution to smaller, less heterogeneous simulation environments.This study used a new method of offloading decision-making that pays attention to the movement of mobile devices in a heterogeneous environment. This proposed method uses Black Widow Optimization in solving the problem of decision selection when offloading. From the simulation results, the performance of the proposed method is better than the comparison method in terms of the amount of energy consumption and delay latency.

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed
    • …
    corecore