9,491 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Minimum power multicasting with delay bound constraints in Ad Hoc wireless networks

    Get PDF
    In this paper, we design a new heuristic for an important extension of the minimum power multicasting problem in ad hoc wireless networks. Assuming that each transmission takes a fixed amount of time, we impose constraints on the number of hops allowed to reach the destination nodes in the multicasting application. This setting would be applicable in time critical or real time applications, and the relative importance of the nodes may be indicated by these delay bounds. We design a filtered beam search procedure for solving this problem. The performance of our algorithm is demonstrated on numerous test cases by benchmarking it against an optimal algorithm in small problem instances, and against a modified version of the well-known Broadcast Incremental Power (BIP) algorithm 20 for relatively large problems

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Increasing network lifetime by battery-aware master selection in radio networks

    Get PDF
    Mobile wireless communication systems often need to maximize their network lifetime (defined as the time until the first node runs out of energy). In the broadcast network lifetime problem, all nodes are sending broadcast traffic, and one asks for an assignment of transmit powers to nodes, and for sets of relay nodes so that the network lifetime is maximized. The selection of a relay set consisting of a single node (the ‘master’), can be regarded as a special case of this problem. We provide a mean value analysis of algorithms controlling the selection of a master node with the objective of maximizing the network lifetime. The results show that already for small networks simple algorithms can extend the average network lifetime considerably

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Dynamic master selection in wireless networks

    Get PDF
    Abstract. Mobile wireless networks need to maximize their network lifetime (defined as the time until the first node runs out of energy). In the broadcast network lifetime problem, all nodes are sending broadcast traffic, and one asks for an assignment of transmit powers to nodes, and for sets of relay nodes so that the network lifetime is maximized. The selection of a dynamic relay set consisting of a single node (the ‘master’), can be regarded as a special case, providing lower bounds to the optimal lifetime in the general setting. This paper provides a first analysis of a ‘dynamic master selection’ algorithm
    • …
    corecore