256 research outputs found

    Data-Driven Intelligent Scheduling For Long Running Workloads In Large-Scale Datacenters

    Get PDF
    Cloud computing is becoming a fundamental facility of society today. Large-scale public or private cloud datacenters spreading millions of servers, as a warehouse-scale computer, are supporting most business of Fortune-500 companies and serving billions of users around the world. Unfortunately, modern industry-wide average datacenter utilization is as low as 6% to 12%. Low utilization not only negatively impacts operational and capital components of cost efficiency, but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby utility. It is critical and challenge to improve multi-resource efficiency for global datacenters. Additionally, with the great commercial success of diverse big data analytics services, enterprise datacenters are evolving to host heterogeneous computation workloads including online web services, batch processing, machine learning, streaming computing, interactive query and graph computation on shared clusters. Most of them are long-running workloads that leverage long-lived containers to execute tasks. We concluded datacenter resource scheduling works over last 15 years. Most previous works are designed to maximize the cluster efficiency for short-lived tasks in batch processing system like Hadoop. They are not suitable for modern long-running workloads of Microservices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new effective scheduling and resource allocation approaches to improve efficiency in large-scale enterprise datacenters. In the dissertation, we are the first of works to define and identify the problems, challenges and scenarios of scheduling and resource management for diverse long-running workloads in modern datacenter. They rely on predictive scheduling techniques to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and explore more intelligent scheduling techniques by adequate predictive knowledges. We innovatively specify what is intelligent scheduling, what abilities are necessary towards intelligent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling problems to resolvable offline scheduling issues. We designed and implemented an intelligent cloud datacenter scheduler, which automatically performs resource-to-performance modeling, predictive optimal reservation estimation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level agreements (SLA) for long-running workloads. Finally, we introduced a large-scale co-location techniques of executing long-running and other workloads on the shared global datacenter infrastructure of Alibaba Group. It effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated beyond scheduling that involves technique evolutions of IDC, network, physical datacenter topology, storage, server hardwares, operating systems and containerization. We demonstrate its effectiveness by analysis of newest Alibaba public cluster trace in 2017. We are the first of works to reveal the global view of scenarios, challenges and status in Alibaba large-scale global datacenters by data demonstration, including big promotion events like Double 11 . Data-driven intelligent scheduling methodologies and effective infrastructure co-location techniques are critical and necessary to pursue maximized multi-resource efficiency in modern large-scale datacenter, especially for long-running workloads

    Timely Long Tail Identification through Agent Based Monitoring and Analytics

    Get PDF
    The increasing complexity and scale of distributed systems has resulted in the manifestation of emergent behavior which substantially affects overall system performance. A significant emergent property is that of the "Long Tail", whereby a small proportion of task stragglers significantly impact job execution completion times. To mitigate such behavior, straggling tasks occurring within the system need to be accurately identified in a timely manner. However, current approaches focus on mitigation rather than identification, which typically identify stragglers too late in the execution lifecycle. This paper presents a method and tool to identify Long Tail behavior within distributed systems in a timely manner, through a combination of online and offline analytics. This is achieved through historical analysis to profile and model task execution patterns, which then inform online analytic agents that monitor task execution at runtime. Furthermore, we provide an empirical analysis of two large-scale production Cloud data enters that demonstrate the challenge of data skew within modern distributed systems, this analysis shows that approximately 5% of task stragglers caused by data skew impact 50% of the total jobs for batch processes. Our results demonstrate that our approach is capable of identifying task stragglers less than 11% into their execution lifecycle with 98% accuracy, signifying significant improvement over current state-of-the-art practice and enables far more effective mitigation strategies in large-scale distributed systems worldwide

    Straggler Root-Cause and Impact Analysis for Massive-scale Virtualized Cloud Datacenters

    Get PDF
    Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena substantially affecting overall system performance. This phenomena is known as “Long Tail”, whereby a small proportion of task stragglers significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with 95% accuracy for short duration jobs

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Towards Efficient Resource Provisioning in Hadoop

    Get PDF
    Considering recent exponential growth in the amount of information processed in Big Data, the high energy consumed by data processing engines in datacenters has become a major issue, underlining the need for efficient resource allocation for better energy-efficient computing. This thesis proposes the Best Trade-off Point (BToP) method which provides a general approach and techniques based on an algorithm with mathematical formulas to find the best trade-off point on an elbow curve of performance vs. resources for efficient resource provisioning in Hadoop MapReduce and Apache Spark. Our novel BToP method is expected to work for any applications and systems which rely on a tradeoff curve with an elbow shape, non-inverted or inverted, for making good decisions. This breakthrough method for optimal resource provisioning was not available before in the scientific, computing, and economic communities. To illustrate the effectiveness of the BToP method on the ubiquitous Hadoop MapReduce, our Terasort experiment shows that the number of task resources recommended by the BToP algorithm is always accurate and optimal when compared to the ones suggested by three popular rules of thumbs. We also test the BToP method on the emerging cluster computing framework Apache Spark running in YARN cluster mode. Despite the effectiveness of Spark’s robust and sophisticated built-in dynamic resource allocation mechanism, which is not available in MapReduce, the BToP method could still consistently outperform it according to our Spark-Bench Terasort test results. The performance efficiency gained from the BToP method not only leads to significant energy saving but also improves overall system throughput and prevents cluster underutilization in a multi-tenancy environment. In General, the BToP method is preferable for workloads with identical resource consumption signatures in production environment where job profiling for behavioral replication will lead to the most efficient resource provisioning
    corecore