344 research outputs found

    Application of model reduction for robust control of self-balancing two-wheeled bicycle

    Get PDF
    In recent years, balance control of two-wheeled bicycle has received more attention of scientists. One difficulty of this problem is the control object is unstable and constantly impacted by noise. To solve this problem, the authors often use robust control algorithms. However, robust controller of self-balancing two-wheeled bicycle are often complex and higher order so affect to quality during real controlling. The article introduces the stochastic balanced truncation algorithm based on Schur analysis and applies this algorithm to reduce order higher order robust controller in control balancing two-wheeled bicycle problem. The simulation results show that the reduced 4th and 5th order controller arcoording to the stochastic balanced truncation algorithm based on Schur analysis can control the two-wheeled bicycle model. The reduced 3rd order controller cannot control the balance of the two-wheeled bicycle model. The reduced 4th and 5th order controller can replace the original controller while the performance of the control system is ensured. Using reduced 5th, 4th order controller will make the program code simpler, reducing the calculation time of the self-balancing two-wheel control system. The simulation results show the correctness of the model reduction algorithm and the robust control algorithm of two-wheeled self-balancing two-wheeled bicycle

    Terrestrial Locomotion of PogoX: From Hardware Design to Energy Shaping and Step-to-step Dynamics Based Control

    Full text link
    We present a novel controller design on a robotic locomotor that combines an aerial vehicle with a spring-loaded leg. The main motivation is to enable the terrestrial locomotion capability on aerial vehicles so that they can carry heavy loads: heavy enough that flying is no longer possible, e.g., when the thrust-to-weight ratio (TWR) is small. The robot is designed with a pogo-stick leg and a quadrotor, and thus it is named as PogoX. We show that with a simple and lightweight spring-loaded leg, the robot is capable of hopping with TWR <1<1. The control of hopping is realized via two components: a vertical height control via control Lyapunov function-based energy shaping, and a step-to-step (S2S) dynamics based horizontal velocity control that is inspired by the hopping of the Spring-Loaded Inverted Pendulum (SLIP). The controller is successfully realized on the physical robot, showing dynamic terrestrial locomotion of PogoX which can hop at variable heights and different horizontal velocities with robustness to ground height variations and external pushes.Comment: 7 pages, 7 figure

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Modeling and Control Strategies for a Two-Wheel Balancing Mobile Robot

    Get PDF
    The problem of balancing and autonomously navigating a two-wheel mobile robot is an increasingly active area of research, due to its potential applications in last-mile delivery, pedestrian transportation, warehouse automation, parts supply, agriculture, surveillance, and monitoring. This thesis investigates the design and control of a two-wheel balancing mobile robot using three different control strategies: Proportional Integral Derivative (PID) controllers, Sliding Mode Control, and Deep Q-Learning methodology. The mobile robot is modeled using a dynamic and kinematic model, and its motion is simulated in a custom MATLAB/Simulink environment. The first part of the thesis focuses on developing a dynamic and kinematic model for the mobile robot. The robot dynamics is derived using the classical Euler-Lagrange method, where motion can be described using potential and kinetic energies of the bodies. Non-holonomic constraints are included in the model to achieve desired motion, such as non-drifting of the mobile robot. These non-holonomic constraints are included using the method of Lagrange multipliers. Navigation for the robot is developed using artificial potential field path planning to generate a map of velocity vectors that are used for the set points for linear velocity and yaw rate. The second part of the thesis focuses on developing and evaluating three different control strategies for the mobile robot: PID controllers, Hierarchical Sliding Mode Control, and Deep-Q-Learning. The performances of the different control strategies are evaluated and compared based on various metrics, such as stability, robustness to mass variations and disturbances, and tracking accuracy. The implementation and evaluation of these strategies are modeled tested in a MATLAB/SIMULINK virtual environment

    Modeling and Control Strategies for a Two-Wheel Balancing Mobile Robot

    Get PDF
    The problem of balancing and autonomously navigating a two-wheel mobile robot is an increasingly active area of research, due to its potential applications in last-mile delivery, pedestrian transportation, warehouse automation, parts supply, agriculture, surveillance, and monitoring. This thesis investigates the design and control of a two-wheel balancing mobile robot using three different control strategies: Proportional Integral Derivative (PID) controllers, Sliding Mode Control, and Deep Q-Learning methodology. The mobile robot is modeled using a dynamic and kinematic model, and its motion is simulated in a custom MATLAB/Simulink environment. The first part of the thesis focuses on developing a dynamic and kinematic model for the mobile robot. The robot dynamics is derived using the classical Euler-Lagrange method, where motion can be described using potential and kinetic energies of the bodies. Non-holonomic constraints are included in the model to achieve desired motion, such as non-drifting of the mobile robot. These non-holonomic constraints are included using the method of Lagrange multipliers. Navigation for the robot is developed using artificial potential field path planning to generate a map of velocity vectors that are used for the set points for linear velocity and yaw rate. The second part of the thesis focuses on developing and evaluating three different control strategies for the mobile robot: PID controllers, Hierarchical Sliding Mode Control, and Deep-Q-Learning. The performances of the different control strategies are evaluated and compared based on various metrics, such as stability, robustness to mass variations and disturbances, and tracking accuracy. The implementation and evaluation of these strategies are modeled tested in a MATLAB/SIMULINK virtual environment
    • …
    corecore