224 research outputs found

    Next-generation optical access seamless Evolution: concluding results of the European FP7 project OASE

    Get PDF
    Increasing bandwidth demand drives the need for next-generation optical access (NGOA) networks that can meet future end-user service requirements. This paper gives an overview of NGOA solutions, the enabling optical access network technologies, architecture principles, and related economics and business models. NGOA requirements (including peak and sustainable data rate, reach, cost, node consolidation, and open access) are proposed, and the different solutions are compared against such requirements in different scenarios (in terms of population density and system migration). Unsurprisingly, it is found that different solutions are best suited for different scenarios. The conclusions drawn from such findings allow us to formulate recommendations in terms of technology, strategy, and policy. The paper is based on the main results of the European FP7 OASE Integrated Project that ran between January 1, 2010 and February 28, 2013

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    How sleep modes and traffic demands affect the energy efficiency in optical access networks

    Get PDF
    An ever-increasing bandwidth demand is the main driver to investigate next-generation optical access (NGOA) networks. These networks, however, do not only have to comply with increasing data rates, but they should also meet the societal green agenda. As the access part consumes a major fraction of the energy consumption in today's fiber-to-the-home-based telecommunication networks, the energy efficiency of NGOA networks should be an important design parameter. In this paper, we present a detailed evaluation of the energy consumption in different NGOA technologies. Furthermore, we analyze the effects of (1) introducing low power modes (e.g., sleep and doze modes) in the various NGOA technologies and (2) using optimal split ratios adjusted to the traffic demands so that the energy consumption is optimized for the desired quality of service level

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Cost and energy efficient operation of converged, reconfigurable optical wireless networks

    Get PDF
    This paper presents a converged fibre-to-the-home (FTTH) based access network architecture featuring wireless services. In order to fulfill the bandwidth demands from end users, a dynamic architecture is proposed with co-existence of LTE, WiMax and UWB technologies. Hybrid wavelength division multiplexing (WDM) and a time division multiplexing (TDM) based optical access network offer reconfigurable provision. This enhances the ability to allocate different wavelengths to different optical networking units (ONUs) on demand. In addition, two different channel routing modules (CRMs) are introduced in order to address the cost effectiveness and energy efficiency issues of the proposed network. Take-up rate adaptive-mode operation and traffic-adaptive power management are utilized to optimize the benefits of low investment cost with energy efficiency. Up to 26% power consumption reduction is achieved at the time of minimum traffic conditions while 10% consumption is achieved at the time of maximum traffic conditions. Besides, 23% energy saving can be achieved compared to conventional systems in fully operated stage

    Efficient T-CONT-agnostic Bandwidth and Wavelength Allocation for NG-PON2

    Get PDF
    Dynamic bandwidth and wavelength allocation are used to demonstrate high quality of service (QoS) in time wavelength-division multiplexed–passive optical networks (TWDM-PONs). Both bandwidth and wavelength assignment are performed on the basis of transmission containers (T-CONTs) and therefore by means of upstream service priority traffic flows. Our medium access control (MAC) protocol therefore ensures consistency in processing alike classes of service across all optical network units (ONUs) in agreement with their QoS figures. For evaluation of the MAC protocol performance, a simulator has been implemented in OPNET featuring a 40 km, 40 Gbps TWDM-PON with four stacked wavelengths at 10 Gbps each and 256 ONUs. Simulation results have confirmed the efficiency of allocating bandwidth to each wavelength and the significant increase of network traffic flow due to adaptive polling from 9.04 to 9.74 Gbps. The benefit of T-CONT-centric allocation has also been measured with respect to packet delay and queue occupancy, achieving low packet delay across all T-CONTs. Therefore, improved NG-PON2 performance and greater efficiency are obtained in this first demonstration of T-CONTs allocated to both wavelength and time.Peer reviewe
    • …
    corecore