9,411 research outputs found

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed

    Mirroring Mobile Phone in the Clouds

    Get PDF
    This paper presents a framework of Mirroring Mobile Phone in the Clouds (MMPC) to speed up data/computing intensive applications on a mobile phone by taking full advantage of the super computing power of the clouds. An application on the mobile phone is dynamically partitioned in such a way that the heavy-weighted part is always running on a mirrored server in the clouds while the light-weighted part remains on the mobile phone. A performance improvement (an energy consumption reduction of 70% and a speed-up of 15x) is achieved at the cost of the communication overhead between the mobile phone and the clouds (to transfer the application codes and intermediate results) of a desired application. Our original contributions include a dynamic profiler and a dynamic partitioning algorithm compared with traditional approaches of either statically partitioning a mobile application or modifying a mobile application to support the required partitioning

    Reproducible Experiment Platform

    Full text link
    Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a)~enormous volumes of datasets being analyzed, b)~variety of techniques and algorithms one have to check inside a single analysis, c)~distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present some key features of REP based on case studies which include trigger optimization and physics analysis studies at the LHCb experiment.Comment: 21st International Conference on Computing in High Energy Physics (CHEP2015), 6 page
    • …
    corecore