555 research outputs found

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Technical Review on Energy Efficient Protocol based on PEGASIS and LEACH

    Get PDF
    A wireless sensor network (WSN) is a new developing technology that enables users to interconnect without any physical arrangement of their geographical location so that sometimes referred to as an arrangement of fewer networks. An ad-hoc network is an adaptive, self-organizing device in mobile, should be able to detect the presence of any other devices that perform necessary set up to facilitate communication, sharing of data and service. The Clustering is used for the network lifetime and it is very important method in Mobile AD Hoc Networks. The scheme is used by the cluster head node which plays a very important role inside the transmitting packet process from one cluster to the other or nearest node. The power resource of each sensor node is limited in the cluster. Minimizing energy dissipation and maximizing network lifetime are important issue in the design of routing protocols for sensor networks. This paper proposes a comparison of LEACH and PEGASIS protocol which is intended to balance the energy consumption of the entire network and extend the lifetime of the network

    Spread Spectrum based QoS aware Energy Efficient Clustering Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are composed of small, resource-constrained sensor nodes that form self-organizing, infrastructure-less, and ad-hoc networks. Many energy-efficient protocols have been developed in the network layer to extend the lifetime and scalability of these networks, but they often do not consider the Quality of Service (QoS) requirements of the data flow, such as delay, data rate, reliability, and throughput. In clustering, the probabilistic and randomized approach for cluster head selection can lead to varying numbers of cluster heads in different rounds of data gathering. This paper presents a new algorithm called "Spread Spectrum based QoS aware Energy Efficient Clustering for Wireless sensor Networks" that uses spread spectrum to limit the formation of clusters and optimize the number of cluster heads in WSNs, improving energy efficiency and QoS for diverse data flows. Simulation results show that the proposed algorithm outperforms classical algorithms in terms of energy efficiency and QoS
    • …
    corecore