795 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Analysis and Design of Communication Policies for Energy-Constrained Machine-Type Devices

    Get PDF
    This thesis focuses on the modelling, analysis and design of novel communication strategies for wireless machine-type communication (MTC) systems to realize the notion of Internet of things (IoT). We consider sensor based MTC devices which acquire physical information from the environment and transmit it to a base station (BS) while satisfying application specific quality-of-service (QoS) requirements. Due to the wireless and unattended operation, these MTC devices are mostly battery-operated and are severely energy-constrained. In addition, MTC systems require low-latency, perpetual operation, massive-access, etc. Motivated by these critical requirements, this thesis proposes optimal data communication policies for four different network scenarios. In the first two scenarios, each MTC device transmits data on a dedicated orthogonal channel and either (i) possess an initially fully charged battery of finite capacity, or (ii) possess the ability to harvest energy and store it in a battery of finite capacity. In the other two scenarios, all MTC devices share a single channel and are either (iii) allocated individual non-overlapping transmission times, or (iv) randomly transmit data on predefined time slots. The proposed novel techniques and insights gained from this thesis aim to better utilize the limited energy resources of machine-type devices in order to effectively serve the future wireless networks. Firstly, we consider a sensor based MTC device communicates with a BS, and devise optimal data compression and transmission policies with an objective to prolong the device-lifetime. We formulate joint optimization problems aiming to maximize the device-lifetime whilst satisfying the delay and bit-error-rate constraints. Our results show significant improvement in device-lifetime. Importantly, the gain is most profound in the low latency regime. Secondly, we consider a sensor based MTC device that is served by a hybrid BS which wirelessly transfers power to the device and receives data transmission from the device. The MTC device employs data compression in order to reduce the energy cost of data transmission. Thus, we propose to jointly optimize the harvesting-time, compression and transmission design, to minimize the energy cost of the system under given delay constraint. The proposed scheme reduces energy consumption up to 19% when data compression is employed. Thirdly, we consider multiple MTC devices transmit data to a BS following the time division multiple access (TDMA). Conventionally, the energy-efficiency performance in TDMA is optimized through multi-user scheduling, i.e., changing the transmission time allocated to different devices. In such a system, the sequence of devices for transmission, i.e., who transmits first and who transmits second, etc., does not have any impact on the energy-efficiency. We consider that data compression is performed before transmission. We jointly optimize both multi-user sequencing and scheduling along with the compression and transmission rate. Our results show that multi-user sequence optimization achieves up to 45% improvement in the energy-efficiency at MTC devices. Lastly, we consider contention resolution diversity slotted ALOHA (CRDSA) with transmit power diversity where each packet copy from a device is transmitted at a randomly selected power level. It results in inter-slot received power diversity, which is exploited by employing a signal-to-interference-plus-noise ratio based successive interference cancellation (SIC) receiver. We propose a message passing algorithm to model the SIC decoding and formulate an optimization problem to determine the optimal transmit power distribution subject to energy constraints. We show that the proposed strategy provides up to 88% system load performance improvement for massive-MTC systems
    • …
    corecore