45 research outputs found

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems

    Get PDF
    Over the past several decades, we have experienced tremendous growth of real-time systems in both scale and complexity. This progress is made possible largely due to advancements in semiconductor technology that have enabled the continuous scaling and massive integration of transistors on a single chip. In the meantime, however, the relentless transistor scaling and integration have dramatically increased the power consumption and degraded the system reliability substantially. Traditional real-time scheduling techniques with the sole emphasis on guaranteeing timing constraints have become insufficient. In this research, we studied the problem of how to develop advanced scheduling methods on hard real-time systems that are subject to multiple design constraints, in particular, timing, energy consumption, and reliability constraints. To this end, we first investigated the energy minimization problem with fault-tolerance requirements for dynamic-priority based hard real-time tasks on a single-core processor. Three scheduling algorithms have been developed to judiciously make tradeoffs between fault tolerance and energy reduction since both design objectives usually conflict with each other. We then shifted our research focus from single-core platforms to multi-core platforms as the latter are becoming mainstream. Specifically, we launched our research in fault-tolerant multi-core scheduling for fixed-priority tasks as fixed-priority scheduling is one of the most commonly used schemes in the industry today. For such systems, we developed several checkpointing-based partitioning strategies with the joint consideration of fault tolerance and energy minimization. At last, we exploited the implicit relations between real-time tasks in order to judiciously make partitioning decisions with the aim of improving system schedulability. According to the simulation results, our design strategies have been shown to be very promising for emerging systems and applications where timeliness, fault-tolerance, and energy reduction need to be simultaneously addressed

    Software Fault Tolerance in Real-Time Systems: Identifying the Future Research Questions

    Get PDF
    Tolerating hardware faults in modern architectures is becoming a prominent problem due to the miniaturization of the hardware components, their increasing complexity, and the necessity to reduce the costs. Software-Implemented Hardware Fault Tolerance approaches have been developed to improve the system dependability to hardware faults without resorting to custom hardware solutions. However, these come at the expense of making the satisfaction of the timing constraints of the applications/activities harder from a scheduling standpoint. This paper surveys the current state of the art of fault tolerance approaches when used in the context real-time systems, identifying the main challenges and the cross-links between these two topics. We propose a joint scheduling-failure analysis model that highlights the formal interactions among software fault tolerance mechanisms and timing properties. This model allows us to present and discuss many open research questions with the final aim to spur the future research activities

    Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

    Get PDF
    © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. https://doi.org/10.1145/3403956[EN] Performance and power constraints come together with Complementary Metal Oxide Semiconductor technology scaling in future Exascale systems. Technology scaling makes each individual transistor more prone to faults and, due to the exponential increase in the number of devices per chip, to higher system fault rates. Consequently, High-performance Computing (HPC) systems need to integrate prediction, detection, and recovery mechanisms to cope with faults efficiently. This article reviews fault detection, fault prediction, and recovery techniques in HPC systems, from electronics to system level. We analyze their strengths and limitations. Finally, we identify the promising paths to meet the reliability levels of Exascale systems.This work has received funding from the European Union's Horizon 2020 (H2020) research and innovation program under the FET-HPC Grant Agreement No. 801137 (RECIPE). Jaume Abella was also partially supported by the Ministry of Economy and Competitiveness of Spain under Contract No. TIN2015-65316-P and under Ramon y Cajal Postdoctoral Fellowship No. RYC-2013-14717, as well as by the HiPEAC Network of Excellence. Ramon Canal is partially supported by the Generalitat de Catalunya under Contract No. 2017SGR0962.Canal, R.; Hernández Luz, C.; Tornero-Gavilá, R.; Cilardo, A.; Massari, G.; Reghenzani, F.; Fornaciari, W.... (2020). Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives. ACM Computing Surveys. 53(5):1-32. https://doi.org/10.1145/3403956S132535Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324.Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers. IEEE Transactions on Computers, 64(2), 477-491. doi:10.1109/tc.2013.116ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest.Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33. doi:10.1109/tdsc.2004.2Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., & McIntosh-Smith, S. (2016). Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. doi:10.1109/sc.2016.54Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., & Cappello, F. (2017). Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 28(12), 3642-3655. doi:10.1109/tpds.2017.2735971M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer.P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA].F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14.F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283Chan, C. S., Pan, B., Gross, K., Vaidyanathan, K., & Rosing, T. Š. (2014). Correcting vibration-induced performance degradation in enterprise servers. ACM SIGMETRICS Performance Evaluation Review, 41(3), 83-88. doi:10.1145/2567529.2567555Chantem, T., Hu, X. S., & Dick, R. P. (2011). Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 1884-1897. doi:10.1109/tvlsi.2010.2058873Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (s. f.). Pinpoint: problem determination in large, dynamic Internet services. Proceedings International Conference on Dependable Systems and Networks. doi:10.1109/dsn.2002.1029005Chen, Z. (2011). Algorithm-based recovery for iterative methods without checkpointing. Proceedings of the 20th international symposium on High performance distributed computing - HPDC ’11. doi:10.1145/1996130.1996142Chen, Z. (2013). Online-ABFT. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP ’13. doi:10.1145/2442516.2442533Coskun, A. K., Rosing, T. S., Mihic, K., De Micheli, G., & Leblebici, Y. (2006). Analysis and Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1), 56-69. doi:10.1166/jolpe.2006.007G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119.Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., … Zilio, T. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535-553. doi:10.1016/j.adhoc.2014.11.002Dally, W. J. (1991). Express cubes: improving the performance of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 40(9), 1016-1023. doi:10.1109/12.83652Dauwe, D., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2018). Resilience-Aware Resource Management for Exascale Computing Systems. IEEE Transactions on Sustainable Computing, 3(4), 332-345. doi:10.1109/tsusc.2018.2797890R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814Di, S., & Cappello, F. (2016). Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2809-2823. doi:10.1109/tpds.2016.2517639Di, S., Guo, H., Gupta, R., Pershey, E. R., Snir, M., & Cappello, F. (2019). Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 30(2), 361-374. doi:10.1109/tpds.2018.2864184Di, S., Robert, Y., Vivien, F., & Cappello, F. (2017). Toward an Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model. IEEE Transactions on Parallel and Distributed Systems, 28(1), 244-259. doi:10.1109/tpds.2016.2546248J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer.DOWNING, S., & SOCIE, D. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31-40. doi:10.1016/0142-1123(82)90018-4Eghbalkhah, B., Kamal, M., Afzali-Kusha, H., Afzali-Kusha, A., Ghaznavi-Ghoushchi, M. B., & Pedram, M. (2015). Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits. Microelectronics Reliability, 55(8), 1152-1162. doi:10.1016/j.microrel.2015.06.004Gottscho, M., Shoaib, M., Govindan, S., Sharma, B., Wang, D., & Gupta, P. (2017). Measuring the Impact of Memory Errors on Application  Performance. IEEE Computer Architecture Letters, 16(1), 51-55. doi:10.1109/lca.2016.2599513Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., … Sengupta, S. (2011). VL2. Communications of the ACM, 54(3), 95-104. doi:10.1145/1897852.1897877Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., … Stanley, K. S. (2005). An overview of the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 397-423. doi:10.1145/1089014.1089021Hoffmann, G. A., Trivedi, K. S., & Malek, M. (2007). A Best Practice Guide to Resource Forecasting for Computing Systems. IEEE Transactions on Reliability, 56(4), 615-628. doi:10.1109/tr.2007.909764Hsiao, M. Y., Carter, W. C., Thomas, J. W., & Stringfellow, W. R. (1981). Reliability, Availability, and Serviceability of IBM Computer Systems: A Quarter Century of Progress. IBM Journal of Research and Development, 25(5), 453-468. doi:10.1147/rd.255.0453Hughes, G. F., Murray, J. F., Kreutz-Delgado, K., & Elkan, C. (2002). Improved disk-drive failure warnings. IEEE Transactions on Reliability, 51(3), 350-357. doi:10.1109/tr.2002.802886S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., … Rayes, A. (2013). A survey on resource allocation in high performance distributed computing systems. Parallel Computing, 39(11), 709-736. doi:10.1016/j.parco.2013.09.009Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html.Jha, S., Formicola, V., Martino, C. D., Dalton, M., Kramer, W. T., Kalbarczyk, Z., & Iyer, R. K. (2018). Resiliency of HPC Interconnects: A Case Study of Interconnect Failures and Recovery in Blue Waters. IEEE Transactions on Dependable and Secure Computing, 15(6), 915-930. doi:10.1109/tdsc.2017.2737537Kiciman, E., & Fox, A. (2005). Detecting Application-Level Failures in Component-Based Internet Services. IEEE Transactions on Neural Networks, 16(5), 1027-1041. doi:10.1109/tnn.2005.853411Kim, T., Sun, Z., Cook, C., Zhao, H., Li, R., Wong, D., & Tan, S. X.-D. (2016). Invited - Cross-layer modeling and optimization for electromigration induced reliability. Proceedings of the 53rd Annual Design Automation Conference. doi:10.1145/2897937.2905010Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., & Węglarz, J. (2013). DCworms – A tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory, 39, 135-151. doi:10.1016/j.simpat.2013.08.007Langou, J., Chen, Z., Bosilca, G., & Dongarra, J. (2008). Recovery Patterns for Iterative Methods in a Parallel Unstable Environment. SIAM Journal on Scientific Computing, 30(1), 102-116. doi:10.1137/040620394J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin.Laprie, J.-C. (s. f.). DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. doi:10.1109/ftcsh.1995.532603Lasance, C. J. M. (2003). Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectronics Reliability, 43(12), 1969-1974. doi:10.1016/s0026-2714(03)00183-5Yinglung Liang, Yanyong Zhang, Sivasubramaniam, A., Jette, M., & Sahoo, R. (s. f.). BlueGene/L Failure Analysis and Prediction Models. International Conference on Dependable Systems and Networks (DSN’06). doi:10.1109/dsn.2006.18Lin, T.-T. Y., & Siewiorek, D. P. (1990). Error log analysis: statistical modeling and heuristic trend analysis. IEEE Transactions on Reliability, 39(4), 419-432. doi:10.1109/24.58720Losada, N., González, P., Martín, M. J., Bosilca, G., Bouteiller, A., & Teranishi, K. (2020). Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 106, 467-481. doi:10.1016/j.future.2020.01.026Lyons, R. E., & Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6(2), 200-209. doi:10.1147/rd.62.0200M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281.Moody, A., Bronevetsky, G., Mohror, K., & de Supinski, B. (2010). Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System. doi:10.2172/984082Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf.Mulas, F., Atienza, D., Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal Balancing Policy for Multiprocessor Stream Computing Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12), 1870-1882. doi:10.1109/tcad.2009.2032372Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A., Brandolese, C., … Janssen, U. (2017). M2DC – Modular Microserver DataCentre with heterogeneous hardware. Microprocessors and Microsystems, 52, 117-130. doi:10.1016/j.micpro.2017.05.019Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126-139. doi:10.1016/j.jpdc.2017.04.015K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811Park, S.-M., & Humphrey, M. (2011). Predictable High-Performance Computing Using Feedback Control and Admission Control. IEEE Transactions on Parallel and Distributed Systems, 22(3), 396-411. doi:10.1109/tpds.2010.100Pfefferman, J. D., & Cernuschi-Frias, B. (2002). A nonparametric nonstationary procedure for failure prediction. IEEE Transactions on Reliability, 51(4), 434-442. doi:10.1109/tr.2002.804733Rangan, K. K., Wei, G.-Y., & Brooks, D. (2009). Thread motion. ACM SIGARCH Computer Architecture News, 37(3), 302-313. doi:10.1145/1555815.1555793Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf.F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680Salfner, F., Schieschke, M., & Malek, M. (2006). Predicting failures of computer systems: a case study for a telecommunication system. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi:10.1109/ipdps.2006.1639672Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd.Singh, S., & Chana, I. (2016). A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges. Journal of Grid Computing, 14(2), 217-264. doi:10.1007/s10723-015-9359-2Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., … Webb, C. F. (1999). IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2), 12-23. doi:10.1109/40.755464Sridhar, A., Sabry, M. M., & Atienza, D. (2014). A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1145-1158. doi:10.1109/tcad.2014.2323194Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J., & Gurumurthi, S. (2015). Memory Errors in Modern Systems. ACM SIGARCH Computer Architecture News, 43(1), 297-310. doi:10.1145/2786763.2694348Stathis, J. H. (2018). The physics of NBTI: What do we really know? 2018 IEEE International Reliability Physics Symposium (IRPS). doi:10.1109/irps.2018.8353539Stellner, G. (s. f.). CoCheck: checkpointing and process migration for MPI. Proceedings of International Conference on Parallel Processing. doi:10.1109/ipps.1996.508106Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3), 66-73. doi:10.1109/mcse.2010.69Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J., … Cappello, F. (2018). Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustainable Computing: Informatics and Systems, 19, 277-290. doi:10.1016/j.suscom.2018.01.004Tang, D., & Iyer, R. K. (1993). Dependability measurement and modeling of a multicomputer system. IEEE Transactions on Computers, 42(1), 62-75. doi:10.1109/12.192214D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf.Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss, S. M. (2002). Predictive algorithms in the management of computer systems. IBM Systems Journal, 41(3), 461-474. doi:10.1147/sj.413.0461Vinoski, S. (2007). Reliability with Erlang. IEEE Internet Com

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Power-Aware Resilience for Exascale Computing

    Get PDF
    To enable future scientific breakthroughs and discoveries, the next generation of scientific applications will require exascale computing performance to support the execution of predictive models and analysis of massive quantities of data, with significantly higher resolution and fidelity than what is possible within existing computing infrastructure. Delivering exascale performance will require massive parallelism, which could result in a computing system with over a million sockets, each supporting many cores. Resulting in a system with millions of components, including memory modules, communication networks, and storage devices. This increase in number of components significantly increases the propensity of exascale computing systems to faults, while driving power consumption and operating costs to unforeseen heights. To achieve exascale performance two challenges must be addressed: resilience to failures and adherence to power budget constraints. These two objectives conflict insofar as performance is concerned, as achieving high performance may push system components past their thermal limit and increase the likelihood of failure. With current systems, the dominant resilience technique is checkpoint/restart. It is believed, however, that this technique alone will not scale to the level necessary to support future systems. Therefore, alternative methods have been suggested to augment checkpoint/restart -- for example process replication. In this thesis, we present a new fault tolerance model called shadow replication that addresses resilience and power simultaneously. Shadow replication associates a shadow process with each main process, similar to traditional replication, however, the shadow process executes at a reduced speed. Shadow replication reduces energy consumption and produces solutions faster than checkpoint/restart and other replication methods in limited power environments. Shadow replication reduces energy consumption up to 25 depending upon the application type, system parameters, and failure rates. The major contribution of this thesis is the development of shadow replication, a power-aware fault tolerant computational model. The second contribution is an execution model applying shadow replication to future high performance exascale-class systems. Next, is a framework to analyze and simulate the power and energy consumption of fault tolerance methods in high performance computing systems. Lastly, to prove the viability of shadow replication an implementation is presented for the Message Passing Interface

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    International audienceWe consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed.Nous considérons un problème d'allocation de services dans des \textit{Clouds}. Les resources de calcul sont caractérisées par une probabilité de panne, et une contrainte de capacité, qui peut être ajustée grâce à la technique dite de Dynamic Voltage and Frequency Scaling (DVFS). Il existe un contrat entre le fournisseur et le client, le fournisseur assurant au client qu'un certain nombre d'instances du service du client sera toujours en train de s'exécuter à la fin de la journée, avec une certaine probabilité. La question est donc de savoir à quelle vitesse devront tourner les processeurs, et à quel point les services devront être répliqués sur les machines. Nous exhibons des algorithmes d'approximation, prouvons leurs facteurs d'approximation sur l'énergie consommée, et décrivons des heuristiques performantes
    corecore