12,001 research outputs found

    Efficient Parallel Algorithm for Statistical Ion Track Simulations in Crystalline Materials

    Full text link
    We present an efficient parallel algorithm for statistical Molecular Dynamics simulations of ion tracks in solids. The method is based on the Rare Event Enhanced Domain following Molecular Dynamics (REED-MD) algorithm, which has been successfully applied to studies of, e.g., ion implantation into crystalline semiconductor wafers. We discuss the strategies for parallelizing the method, and we settle on a host-client type polling scheme in which a multiple of asynchronous processors are continuously fed to the host, which, in turn, distributes the resulting feed-back information to the clients. This real-time feed-back consists of, e.g., cumulative damage information or statistics updates necessary for the cloning in the rare event algorithm. We finally demonstrate the algorithm for radiation effects in a nuclear oxide fuel, and we show the balanced parallel approach with high parallel efficiency in multiple processor configurations.Comment: 17 pages, seven figures, four table

    Fast Optimal Energy Management with Engine On/Off Decisions for Plug-in Hybrid Electric Vehicles

    Full text link
    In this paper we demonstrate a novel alternating direction method of multipliers (ADMM) algorithm for the solution of the hybrid vehicle energy management problem considering both power split and engine on/off decisions. The solution of a convex relaxation of the problem is used to initialize the optimization, which is necessarily nonconvex, and whilst only local convergence can be guaranteed, it is demonstrated that the algorithm will terminate with the optimal power split for the given engine switching sequence. The algorithm is compared in simulation against a charge-depleting/charge-sustaining (CDCS) strategy and dynamic programming (DP) using real world driver behaviour data, and it is demonstrated that the algorithm achieves 90\% of the fuel savings obtained using DP with a 3000-fold reduction in computational time

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis

    Get PDF
    This paper focuses on the diversity of engine technologies for Low Emission Vehicles (LEVs) that are developed by car manufacturers in order to substitute for the conventional internal combustion engine vehicle. Our purpose is to analyse the competition between the various technologies for LEVs as well as the innovative strategy of car manufacturers. We first propose to define and to represent these technological trajectories in order to compare their performances and to identify their strength and weaknesses. The technological bottlenecks, the barriers to the adoption of these alternative engine technologies as well as the features of this technological competition are underlined. We then use a patent data analysis to study the patent portfolios of the main car manufacturers in these technologies on the period from 1990 to 2005. The dynamics of patents applied by car manufacturers gives insight on the competition among technologies and on the strategy of firms. This analysis emphasises the progressive diversification of firms patent portfolios over the whole set of engine technologies and the differentiated strategic positioning of car manufacturers according to countries.Low emission vehicles; environmental innovation; technological competition; patent data

    Advanced methodology for the optimal sizing of the energy storage system in a hybrid electric refuse collector vehicle using real routes

    Get PDF
    This paper presents a new methodology for optimal sizing of the energy storage system ( ESS ), with the aim of being used in the design process of a hybrid electric (HE) refuse collector vehicle ( RCV ). This methodology has, as the main element, to model a multi-objective optimisation problem that considers the specific energy of a basic cell of lithium polymer ( Li – Po ) battery and the cost of manufacture. Furthermore, optimal space solutions are determined from a multi-objective genetic algorithm that considers linear inequalities and limits in the decision variables. Subsequently, it is proposed to employ optimal space solutions for sizing the energy storage system, based on the energy required by the drive cycle of a conventional refuse collector vehicle. In addition, it is proposed to discard elements of optimal space solutions for sizing the energy storage system so as to achieve the highest fuel economy in the hybrid electric refuse collector vehicle design phase.Postprint (published version

    Hybrid power system for Micro Air Vehicles

    Get PDF
    Today Micro Air Vehicles are in need of a good power source that would enable them longer flight time and various functionalities. This work is focused on to this problem. A possible solution that is offered in this study is implementing a hybrid power system consisting of battery and supercapacitor (SCAP). The proposed hybrid power system was tested on an existing MAV platform (Cheerson CX-10). A separate hybrid power printed circuit board (PCB) was designed and manufactured. For experimental and system verification purposes, the PCB was not sized for on-board flight. The hybrid power PCB was connected to MAV through light power wires. To eliminate flight inconsistency, a testbed was constructed from plywood. The quadcopter was controlled using a joystick. In total, three experimental tests were conducted. In the first experiment, SCAP charge time was evaluated and compared to the calculated value. The results were very close. In the second and third experiments, MAV flight time was collected for both battery and hybrid powered MAVs for two different flight patterns. The first pattern was flying 10 seconds at low speed using battery power and 10 seconds at average speed using SCAPs power. The second pattern was flying at a fixed average speed: 10 seconds with battery and 5 seconds with SCAP power. For all the experiments, six new fully charged batteries were used. In every flight, in order to reduce the risk of decreasing battery performance, battery voltage was controlled so as not to exceed 75% depth of discharge. As soon as it reached 75% discharge rate, the flight was discontinued. At the end of the experiments, statistical data analysis was performed. The study hypothesis that the hybrid powered MAV flight time is more than the battery powered MAV flight time was proven

    Electrochemical Double Layered Capacitor Development and Implementation System

    Get PDF
    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design allows expandability in parallel and series to fit any application and number of cells required. Lastly, test procedures were run to validate the proper operation of the systems

    Optimal Battery Weight Fraction for Serial Hybrid Propulsion System in Aircraft Design

    Get PDF
    This thesis focuses on electric propulsion technology associated with serial hybrid power plants most commonly associated with urban air mobility vehicles. While closed form analytical solutions for parallel hybrid aviation cases have been determined, optimized serial hybrid power plants have not seen the same degree of fidelity. Presented here are the analytical relationships between several preliminary aircraft design objectives and the battery weight fraction. These design objectives include aircraft weight, range, operation cost, and carbon emissions. The relationships are based on a serial hybrid electric propulsion architecture from an energy standpoint, and can be applied to hybrid aircraft of different weights, aerodynamic designs, and propulsive efficiencies. Three hybrid electric propulsion design related variables are also defined in the process to help clarify novel specifications unique to hybrid propulsion systems. For all design objectives, the optimal battery weight fraction is found to be either zero or one in unconstrained cases. When a minimum range requirement is applied, non-integer weight fraction solutions can be found for minimizing cost and emissions

    Electric Drives for Propulsion System of Transport Aircraft

    Get PDF
    • …
    corecore