4,190 research outputs found

    Quality of service optimization in solar cells-based energy harvesting wireless sensor networks

    Get PDF
    In energy harvesting wireless sensor networks, the sensors are able to harvest energy from the environment to recharge their batteries and thus prolong indefinitely their activities. Widely used energy harvesting systems are based on solar cells, which are predictable (i.e., their energy production can be predicted in advance). However, since the energy production of solar cells is not constant during the day, and it is null at night time, these systems require algorithms able to balance the energy consumption and production of the sensors. In this framework, we approach the design of a scheduling algorithm for the sensors that selects among a set of available tasks for the sensors (each assigned with a given quality of service), in order to keeping the sensors energy neutral, i.e., the energy produced during a day exceeds the energy consumed in the same time frame, while improving the overall quality of service. The algorithm solves an optimization problem by using a greedy approach that can be easily implemented on low-power sensors. The simulation results demonstrate that our approach is able to improve the quality of the overall scheduling plan of all networked sensors and that it actually maintains them energy neutral

    Sustainable Forest Management Techniques

    Get PDF

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore