3,316 research outputs found

    Energy Harvesting Communication Networks with System Costs

    Get PDF
    This dissertation focuses on characterizing optimal energy management policies for energy harvesting communication networks with system costs. The system costs that we consider are the cost of circuitry to be on (processing cost) at the transmitters, cost of decoding at the receivers, cost of moving to harvest more energy in mobile energy harvesting nodes, and the cost of collecting measurements (sampling cost) from physical phenomena. We first consider receiver decoding costs in networks where receivers, in addition to transmitters, rely on energy harvested from nature to communicate. Energy harvested at the receivers is used to decode their intended messages, and is modeled as a convex increasing function of the incoming rate. With the goal of maximizing throughput by a given deadline, we study single-user and multi-user settings, and show that decoding costs at the receivers can be represented as generalized data arrivals at the transmitters. This introduces a further coupling between the transmitters and receivers of the network and allows us to characterize optimal policies by moving all constraints to the transmitter side. Next, we study the decoding cost effect on energy harvesting cooperative multiple access channels, where users employ data cooperation to increase their achievable rates. Data cooperation requires each user to decode the other user's data before forwarding it to the destination, which uses up some of the harvested energy. With the presence of decoding costs, we show that data cooperation may not be always helpful; if the decoding costs are relatively high, then sending directly to the receiver without data cooperation between the users achieves higher throughput. When cooperation is helpful, we determine the optimum allocation of available energy between decoding cooperative partner's data and forwarding it to the destination. We then study the impact of adding processing costs, on top of decoding costs, in energy harvesting two-way channels. Processing costs are the amounts of energy spent for circuitry operation, and are incurred whenever a user is communicating. We show that due to processing costs, transmission may become bursty, where users communicate through only a portion of the time. We develop an optimal scheme that maximizes the sum throughput by a given deadline under both decoding and processing costs. Next, we focus on online policies. We consider a single-user energy harvesting channel where the transmitter is equipped with a finite-sized battery, and the goal is to maximize the long term average utility, for general concave increasing utility functions. We show that fixed fraction policies are near optimal; they achieve a long term average utility that lies within constant multiplicative and additive gaps from the optimal solution for all battery sizes and all independent and identically distributed energy arrival patterns. We then consider a specific scenario of a utility function that measures the distortion of Gaussian samples communicated over a Gaussian channel. We formulate two problems: one with, and the other without sampling costs, and design near optimal fixed fraction policies for the two problems. Then, we consider another aspect of costs in energy harvesting single-user channels, that is, the energy spent in physical movement in search of better energy harvesting locations. Since movement has a cost, there exists a tradeoff between staying at the same location and moving to a new one. Staying at the same location allows the transmitter to use all its available energy in transmission, while moving to a new one may let the transmitter harvest higher amounts of energy and achieve higher rates at the expense of a cost incurred through the relocation process. We characterize this tradeoff optimally under both offline and online settings. Next, we consider different performance metrics, other than throughput, in energy harvesting communication networks. First, we study the issue of delay in single-user and broadcast energy harvesting channels. We define the delay per data unit as the time elapsed from the unit's arrival at the transmitter to its departure. With a pre-specified amount of data to be delivered, we characterize delay minimal energy management policies. We show that the structure of the optimal policy is different from throughput-optimal policies; to minimize the average delay, earlier arriving data units are transmitted using higher powers than later arriving ones, and the transmit power may reach zero, leading to communication gaps, in between energy or data arrival instances. Finally, we conclude this dissertation by considering the metric of the age of information in energy harvesting two-hop networks, where a transmitter is communicating with a receiver through a relay. Different from delay, the age of information is defined as the time elapsed since the latest data unit has reached the destination. We show that age minimal policies are such that the transmitter sends message updates to the relay just in time as the relay is ready to forward them to the receiver

    Optimal Resource Allocation in Ultra-low Power Fog-computing SWIPT-based Networks

    Full text link
    In this paper, we consider a fog computing system consisting of a multi-antenna access point (AP), an ultra-low power (ULP) single antenna device and a fog server. The ULP device is assumed to be capable of both energy harvesting (EH) and information decoding (ID) using a time-switching simultaneous wireless information and power transfer (SWIPT) scheme. The ULP device deploys the harvested energy for ID and either local computing or offloading the computations to the fog server depending on which strategy is most energy efficient. In this scenario, we optimize the time slots devoted to EH, ID and local computation as well as the time slot and power required for the offloading to minimize the energy cost of the ULP device. Numerical results are provided to study the effectiveness of the optimized fog computing system and the relevant challenges

    Energy Harvesting Networks with General Utility Functions: Near Optimal Online Policies

    Full text link
    We consider online scheduling policies for single-user energy harvesting communication systems, where the goal is to characterize online policies that maximize the long term average utility, for some general concave and monotonically increasing utility function. In our setting, the transmitter relies on energy harvested from nature to send its messages to the receiver, and is equipped with a finite-sized battery to store its energy. Energy packets are independent and identically distributed (i.i.d.) over time slots, and are revealed causally to the transmitter. Only the average arrival rate is known a priori. We first characterize the optimal solution for the case of Bernoulli arrivals. Then, for general i.i.d. arrivals, we first show that fixed fraction policies [Shaviv-Ozgur] are within a constant multiplicative gap from the optimal solution for all energy arrivals and battery sizes. We then derive a set of sufficient conditions on the utility function to guarantee that fixed fraction policies are within a constant additive gap as well from the optimal solution.Comment: To appear in the 2017 IEEE International Symposium on Information Theory. arXiv admin note: text overlap with arXiv:1705.1030

    Optimal Energy Management for Energy Harvesting Transmitter and Receiver with Helper

    Full text link
    We study energy harvesting (EH) transmitter and receiver, where the receiver decodes data using the harvested energy from the nature and from an independent EH node, named helper. Helper cooperates with the receiver by transferring its harvested energy to the receiver over an orthogonal fading channel. We study an offline optimal power management policy to maximize the reliable information rate. The harvested energy in all three nodes are assumed to be known. We consider four different scenarios; First, for the case that both transmitter and the receiver have batteries, we show that the optimal policy is transferring the helper harvested energy to the receiver, immediately. Next, for the case of non-battery receiver and full power transmitter, we model a virtual EH receiver with minimum energy constraint to achieve an optimal policy. Then, we consider a non-battery EH receiver and EH transmitter with battery. Finally, we derive optimal power management wherein neither the transmitter nor the receiver have batteries. We propose three iterative algorithms to compute optimal energy management policies. Numerical results are presented to corroborate the advantage of employing the helper.Comment: It is a conference paper with 5 pages and one figure, submitted to ISITA201

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer
    • …
    corecore