59,127 research outputs found

    Short Term Load Forecasting New Year Celebration Holiday Using Interval Type-2 Fuzzy Inference System (Case Study: Java – Bali Electrical System)

    Get PDF
    Celebration of New Year In the Indonesian is constituted the one of the visit Indonesian’s tourism. This event course changes the load of electrical energy. The electrical energy providers that control and operation of electrical in Java and Bali (Java, Bali Electrical System) is required to be able to ensure continuity of load demand at this time, and forecast for the future. Short-term load forecasting very need to be supported by computational methods for simulation and validation. The one of computation’s methods is Interval Type – 2 Fuzzy Inference System (IT-2 FIS). Interval Type-2 Fuzzy Inference System (IT-2 FIS) as the development of methods of Interval Type-1 Fuzzy Inference System (IT-1 FIS), it is appropriate to be used in load forecasting because it has the advantages that very flexible on the change of the footprint of uncertainty (FOU), so it supports to establish an initial processing of the time series, computing, simulation and validation of system models. Forecasting methods used in this research are IT-2 FIS. The process for to know and analyzing the peak load a day is the specially day and 4 days before New year Celebration in the previous year continued analysis by using IT-2 FIS will be obtained at the peak load forecasting New Year Celebration in the coming year. This research shown the average of error value in 2012, 2013 and 2014 is 0,642%. This value is better than using the IT-1 FIS which has a value of error to 0.649%. This research concluded that IT-2 FIS can be used in Short Term Load Forecasting

    Application of Core Vector Machine for Prediction of Day-Ahead Electricity Prices

    Get PDF
    This paper presents Core Vector Machine (CVM) applied for short term electricity price forecasting in an Indian energy market. The accuracy in electricity price forecasting is very crucial for the power producers and consumers. With the accurate price forecasting, power producers can maximize their profit and manage short term operation. Meanwhile, consumers can maximize their utilities efficiently. The objective of this research is to develop models for day-ahead price forecasting using CVM during various seasons. A feature selection technique is used along with the CVM to reduce the variables for accurate price forecasting. Simulation results reveal that the CVM along with feature selection gives better results when compared with other machine learning techniques

    Long –term load forecasting of power systems using Artificial Neural Network and ANFIS

    Get PDF
    Load forecasting is very important for planning and operation in power system energy management. It reinforces the energy efficiency and reliability of power systems. Problems of power systems are tough to solve because power systems are huge complex graphically, widely distributed and influenced by many unexpected events. It has taken into consideration the various demographic factors like weather, climate, and variation of load demands. In this paper, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models were used to analyse data collection obtained from the Metrological Department of Malaysia. The data sets cover a seven-year period (2009- 2016) on monthly basis. The ANN and ANFIS were used for long-term load forecasting. The performance evaluations of both models that were executed by showing that the results for ANFIS produced much more accurate results compared to ANN model. It also studied the effects of weather variables such as temperature, humidity, wind speed, rainfall, actual load and previous load on load forecasting. The simulation was carried out in the environment of MATLAB software

    Forecasting OPEC oil price: a comparison of parametric stochastic models

    Get PDF
    Most academic papers on oil price forecasting have frequently focused on the use of WTI and European Brent oil price series with little focus on other equally important international oil price benchmarks such as the OPEC Reference Basket (ORB). The ORB is a weighted average of 11-member countries crude streams weighted according to production and exports to the main markets. This paper compares the forecasting accuracy of four stochastic processes and four univariate random walk models using daily data of OPEC Reference Basket series. The study finds that the random walk univariate model outperforms the other stochastic processes. An element of uncertainty was introduced into the point estimates by deriving probability distribution that describes the possible price paths on a given day and their likelihood of occurrence. This will help decision makers, traders and analysts to have a better understanding of the possible daily prices that could occur. JEL Classification Numbers: E64; C22; Q30 Keywords: Oil Price Forecasting, Probability Distributions, and Forecast Evaluation Statistics, Brownian Motion with Mean Reversion process, GARCH Model

    Feature-driven improvement of renewable energy forecasting and trading

    Get PDF
    M. A. Muñoz, J. M. Morales, and S. Pineda, Feature-driven Improvement of Renewable Energy Forecasting and Trading, IEEE Transactions on Power Systems, 2020.Inspired from recent insights into the common ground of machine learning, optimization and decision-making, this paper proposes an easy-to-implement, but effective procedure to enhance both the quality of renewable energy forecasts and the competitive edge of renewable energy producers in electricity markets with a dual-price settlement of imbalances. The quality and economic gains brought by the proposed procedure essentially stem from the utilization of valuable predictors (also known as features) in a data-driven newsvendor model that renders a computationally inexpensive linear program. We illustrate the proposed procedure and numerically assess its benefits on a realistic case study that considers the aggregate wind power production in the Danish DK1 bidding zone as the variable to be predicted and traded. Within this context, our procedure leverages, among others, spatial information in the form of wind power forecasts issued by transmission system operators (TSO) in surrounding bidding zones and publicly available in online platforms. We show that our method is able to improve the quality of the wind power forecast issued by the Danish TSO by several percentage points (when measured in terms of the mean absolute or the root mean square error) and to significantly reduce the balancing costs incurred by the wind power producer.European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (grant agreement No. 755705) Spanish Ministry of Economy, Industry, and Competitiveness through project ENE2017-83775-P
    • 

    corecore