3,571 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Aeronautical Ad Hoc Networking for the Internet-Above-The-Clouds

    Full text link
    The engineering vision of relying on the ``smart sky" for supporting air traffic and the ``Internet above the clouds" for in-flight entertainment has become imperative for the future aircraft industry. Aeronautical ad hoc Networking (AANET) constitutes a compelling concept for providing broadband communications above clouds by extending the coverage of Air-to-Ground (A2G) networks to oceanic and remote airspace via autonomous and self-configured wireless networking amongst commercial passenger airplanes. The AANET concept may be viewed as a new member of the family of Mobile ad hoc Networks (MANETs) in action above the clouds. However, AANETs have more dynamic topologies, larger and more variable geographical network size, stricter security requirements and more hostile transmission conditions. These specific characteristics lead to more grave challenges in aircraft mobility modeling, aeronautical channel modeling and interference mitigation as well as in network scheduling and routing. This paper provides an overview of AANET solutions by characterizing the associated scenarios, requirements and challenges. Explicitly, the research addressing the key techniques of AANETs, such as their mobility models, network scheduling and routing, security and interference are reviewed. Furthermore, we also identify the remaining challenges associated with developing AANETs and present their prospective solutions as well as open issues. The design framework of AANETs and the key technical issues are investigated along with some recent research results. Furthermore, a range of performance metrics optimized in designing AANETs and a number of representative multi-objective optimization algorithms are outlined

    Towards 6G Networks: Use Cases and Technologies

    Full text link
    Reliable data connectivity is vital for the ever increasingly intelligent, automated and ubiquitous digital world. Mobile networks are the data highways and, in a fully connected, intelligent digital world, will need to connect everything, from people to vehicles, sensors, data, cloud resources and even robotic agents. Fifth generation (5G) wireless networks (that are being currently deployed) offer significant advances beyond LTE, but may be unable to meet the full connectivity demands of the future digital society. Therefore, this article discusses technologies that will evolve wireless networks towards a sixth generation (6G), and that we consider as enablers for several potential 6G use cases. We provide a full-stack, system-level perspective on 6G scenarios and requirements, and select 6G technologies that can satisfy them either by improving the 5G design, or by introducing completely new communication paradigms.Comment: The paper has been accepted for publication at the IEEE Communications Magazine, 202

    Wireless Internet over Heterogeneous Wireless Networks

    Get PDF
    One of the two keywords for the next generation wireless communications is seamless. Being involved in the essential e-Japan Plan promoted by the Japanese Government, the MIRAI (Multimedia Integrated network by Radio Access Innovation) project is responsible for the research and development on the seamless integration of various wireless access systems for practical use by the year 2005. A heterogeneous network architecture including a common tool, a common platform, and a common access is proposed in this paper. Concretely, software-defined-radio technologies are used to develop a multi-service user terminal to be used for access to different wireless networks. The common platform for various wireless networks is based on a wireless supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling and paging. A proof-of-concept experimental demonstration system is available from March 200

    MAC Protocols for Terahertz Communication: A Comprehensive Survey

    Full text link
    Terahertz communication is emerging as a future technology to support Terabits per second link with highlighting features as high throughput and negligible latency. However, the unique features of the Terahertz band such as high path loss, scattering and reflection pose new challenges and results in short communication distance. The antenna directionality, in turn, is required to enhance the communication distance and to overcome the high path loss. However, these features in combine negate the use of traditional Medium access protocols. Therefore novel MAC protocol designs are required to fully exploit their potential benefits including efficient channel access, control message exchange, link establishment, mobility management, and line-of-sight blockage mitigation. An in-depth survey of Terahertz MAC protocols is presented in this paper. The paper highlights the key features of the Terahertz band which should be considered while designing an efficient Terahertz MAC protocol, and the decisions which if taken at Terahertz MAC layer can enhance the network performance. Different Terahertz applications at macro and nano scales are highlighted with design requirements for their MAC protocols. The MAC protocol design issues and considerations are highlighted. Further, the existing MAC protocols are also classified based on network topology, channel access mechanisms, and link establishment strategies as Transmitter and Receiver initiated communication. The open challenges and future research directions on Terahertz MAC protocols are also highlighted.Comment: Submitted to IEEE Communication Surveys and Tutorials Journa

    NFV and SDN - Key Technology Enablers for 5G Networks

    Full text link
    Communication networks are undergoing their next evolutionary step towards 5G. The 5G networks are envisioned to provide a flexible, scalable, agile and programmable network platform over which different services with varying requirements can be deployed and managed within strict performance bounds. In order to address these challenges a paradigm shift is taking place in the technologies that drive the networks, and thus their architecture. Innovative concepts and techniques are being developed to power the next generation mobile networks. At the heart of this development lie Network Function Virtualization and Software Defined Networking technologies, which are now recognized as being two of the key technology enablers for realizing 5G networks, and which have introduced a major change in the way network services are deployed and operated. For interested readers that are new to the field of SDN and NFV this paper provides an overview of both these technologies with reference to the 5G networks. Most importantly it describes how the two technologies complement each other and how they are expected to drive the networks of near future.Comment: This is an accepted version and consists of 11 pages, 9 figures and 32 reference

    Low Power Wide Area Networks: An Overview

    Full text link
    Low Power Wide Area (LPWA) networks are attracting a lot of attention primarily because of their ability to offer affordable connectivity to the low-power devices distributed over very large geographical areas. In realizing the vision of the Internet of Things (IoT), LPWA technologies complement and sometimes supersede the conventional cellular and short range wireless technologies in performance for various emerging smart city and machine-to-machine (M2M) applications. This review paper presents the design goals and the techniques, which different LPWA technologies exploit to offer wide-area coverage to low-power devices at the expense of low data rates. We survey several emerging LPWA technologies and the standardization activities carried out by different standards development organizations (e.g., IEEE, IETF, 3GPP, ETSI) as well as the industrial consortia built around individual LPWA technologies (e.g., LORa Alliance,WEIGHTLESS-SIG, and DASH7 Alliance). We further note that LPWA technologies adopt similar approaches, thus sharing similar limitations and challenges. This paper expands on these research challenges and identifies potential directions to address them. While the proprietary LPWA technologies are already hitting the market with large nationwide roll-outs, this paper encourages an active engagement of the research community in solving problems that will shape the connectivity of tens of billions of devices in the next decade.Comment: \c{opyright} 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Exploring Broadband Enabled Smart eEnvironment: Wireless Sensor (Mesh) Network

    Get PDF
    This paper explored the emergent importance of the use sensors as complementary or as alternative to environmental sensing and monitoring, industrial monitoring, and surface explorations. Advances in wireless broadband technology have enabled the use Wireless Sensor (Mesh) Network (WSN), a type mobile ad hoc network (MANET), in all facet of human endeavor. As a next-generation wireless communication, which centered on energy savings, communication reliability, and security, WSN has increased our processing, sensing, and communications capabilities. Hence, this paper is an exploration of recent reliance on sensors as result of broadband enabled smart environment for activities, such as environmental and habitat monitory, military surveillance, target tracking, search and rescue, and logistical tracking and supply-chain management

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    A Survey on Legacy and Emerging Technologies for Public Safety Communications

    Full text link
    Effective emergency and natural disaster management depend on the efficient mission-critical voice and data communication between first responders and victims. Land Mobile Radio System (LMRS) is a legacy narrowband technology used for critical voice communications with limited use for data applications. Recently Long Term Evolution (LTE) emerged as a broadband communication technology that has a potential to transform the capabilities of public safety technologies by providing broadband, ubiquitous, and mission-critical voice and data support. For example, in the United States, FirstNet is building a nationwide coast-to-coast public safety network based of LTE broadband technology. This paper presents a comparative survey of legacy and the LTE-based public safety networks, and discusses the LMRS-LTE convergence as well as mission-critical push-to-talk over LTE. A simulation study of LMRS and LTE band class 14 technologies is provided using the NS-3 open source tool. An experimental study of APCO-25 and LTE band class 14 is also conducted using software-defined radio, to enhance the understanding of the public safety systems. Finally, emerging technologies that may have strong potential for use in public safety networks are reviewed.Comment: Accepted at IEEE Communications Surveys and Tutorial
    • …
    corecore