31 research outputs found

    Cloud computing: survey on energy efficiency

    Get PDF
    International audienceCloud computing is today’s most emphasized Information and Communications Technology (ICT) paradigm that is directly or indirectly used by almost every online user. However, such great significance comes with the support of a great infrastructure that includes large data centers comprising thousands of server units and other supporting equipment. Their share in power consumption generates between 1.1% and 1.5% of the total electricity use worldwide and is projected to rise even more. Such alarming numbers demand rethinking the energy efficiency of such infrastructures. However, before making any changes to infrastructure, an analysis of the current status is required. In this article, we perform a comprehensive analysis of an infrastructure supporting the cloud computing paradigm with regards to energy efficiency. First, we define a systematic approach for analyzing the energy efficiency of most important data center domains, including server and network equipment, as well as cloud management systems and appliances consisting of a software utilized by end users. Second, we utilize this approach for analyzing available scientific and industrial literature on state-of-the-art practices in data centers and their equipment. Finally, we extract existing challenges and highlight future research directions

    Enabling Hyperscale Web Services

    Full text link
    Modern web services such as social media, online messaging, web search, video streaming, and online banking often support billions of users, requiring data centers that scale to hundreds of thousands of servers, i.e., hyperscale. In fact, the world continues to expect hyperscale computing to drive more futuristic applications such as virtual reality, self-driving cars, conversational AI, and the Internet of Things. This dissertation presents technologies that will enable tomorrow’s web services to meet the world’s expectations. The key challenge in enabling hyperscale web services arises from two important trends. First, over the past few years, there has been a radical shift in hyperscale computing due to an unprecedented growth in data, users, and web service software functionality. Second, modern hardware can no longer support this growth in hyperscale trends due to a decline in hardware performance scaling. To enable this new hyperscale era, hardware architects must become more aware of hyperscale software needs and software researchers can no longer expect unlimited hardware performance scaling. In short, systems researchers can no longer follow the traditional approach of building each layer of the systems stack separately. Instead, they must rethink the synergy between the software and hardware worlds from the ground up. This dissertation establishes such a synergy to enable futuristic hyperscale web services. This dissertation bridges the software and hardware worlds, demonstrating the importance of that bridge in realizing efficient hyperscale web services via solutions that span the systems stack. The specific goal is to design software that is aware of new hardware constraints and architect hardware that efficiently supports new hyperscale software requirements. This dissertation spans two broad thrusts: (1) a software and (2) a hardware thrust to analyze the complex hyperscale design space and use insights from these analyses to design efficient cross-stack solutions for hyperscale computation. In the software thrust, this dissertation contributes uSuite, the first open-source benchmark suite of web services built with a new hyperscale software paradigm, that is used in academia and industry to study hyperscale behaviors. Next, this dissertation uses uSuite to study software threading implications in light of today’s hardware reality, identifying new insights in the age-old research area of software threading. Driven by these insights, this dissertation demonstrates how threading models must be redesigned at hyperscale by presenting an automated approach and tool, uTune, that makes intelligent run-time threading decisions. In the hardware thrust, this dissertation architects both commodity and custom hardware to efficiently support hyperscale software requirements. First, this dissertation characterizes commodity hardware’s shortcomings, revealing insights that influenced commercial CPU designs. Based on these insights, this dissertation presents an approach and tool, SoftSKU, that enables cheap commodity hardware to efficiently support new hyperscale software paradigms, improving the efficiency of real-world web services that serve billions of users, saving millions of dollars, and meaningfully reducing the global carbon footprint. This dissertation also presents a hardware-software co-design, uNotify, that redesigns commodity hardware with minimal modifications by using existing hardware mechanisms more intelligently to overcome new hyperscale overheads. Next, this dissertation characterizes how custom hardware must be designed at hyperscale, resulting in industry-academia benchmarking efforts, commercial hardware changes, and improved software development. Based on this characterization’s insights, this dissertation presents Accelerometer, an analytical model that estimates gains from hardware customization. Multiple hyperscale enterprises and hardware vendors use Accelerometer to make well-informed hardware decisions.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169802/1/akshitha_1.pd

    Multi-Criteria Decision-Making Approach for Container-based Cloud Applications: The SWITCH and ENTICE Workbenches

    Get PDF
    Many emerging smart applications rely on the Internet of Things (IoT) to provide solutions to time-critical problems. When building such applications, a software engineer must address multiple Non-Functional Requirements (NFRs), including requirements for fast response time, low communication latency, high throughput, high energy efficiency, low operational cost and similar. Existing modern container-based software engineering approaches promise to improve the software lifecycle; however, they fail short of tools and mechanisms for NFRs management and optimisation. Our work addresses this problem with a new decision-making approach based on a Pareto Multi-Criteria optimisation. By using different instance configurations on various geo-locations, we demonstrate the suitability of our method, which narrows the search space to only optimal instances for the deployment of the containerised microservice.This solution is included in two advanced software engineering environments, the SWITCH workbench, which includes an Interactive Development Environment (IDE) and the ENTICE Virtual Machine and container images portal. The developed approach is particularly useful when building, deploying and orchestrating IoT applications across multiple computing tiers, from Edge-Cloudlet to Fog-Cloud data centres

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Energy-Performance Optimization for the Cloud

    Get PDF

    Bandwidth-aware distributed ad-hoc grids in deployed wireless sensor networks

    Get PDF
    Nowadays, cost effective sensor networks can be deployed as a result of a plethora of recent engineering advances in wireless technology, storage miniaturisation, consolidated microprocessor design, and sensing technologies. Whilst sensor systems are becoming relatively cheap to deploy, two issues arise in their typical realisations: (i) the types of low-cost sensors often employed are capable of limited resolution and tend to produce noisy data; (ii) network bandwidths are relatively low and the energetic costs of using the radio to communicate are relatively high. To reduce the transmission of unnecessary data, there is a strong argument for performing local computation. However, this can require greater computational capacity than is available on a single low-power processor. Traditionally, such a problem has been addressed by using load balancing: fragmenting processes into tasks and distributing them amongst the least loaded nodes. However, the act of distributing tasks, and any subsequent communication between them, imposes a geographically defined load on the network. Because of the shared broadcast nature of the radio channels and MAC layers in common use, any communication within an area will be slowed by additional traffic, delaying the computation and reporting that relied on the availability of the network. In this dissertation, we explore the tradeoff between the distribution of computation, needed to enhance the computational abilities of networks of resource-constrained nodes, and the creation of network traffic that results from that distribution. We devise an application-independent distribution paradigm and a set of load distribution algorithms to allow computationally intensive applications to be collaboratively computed on resource-constrained devices. Then, we empirically investigate the effects of network traffic information on the distribution performance. We thus devise bandwidth-aware task offload mechanisms that, combining both nodes computational capabilities and local network conditions, investigate the impacts of making informed offload decisions on system performance. The highly deployment-specific nature of radio communication means that simulations that are capable of producing validated, high-quality, results are extremely hard to construct. Consequently, to produce meaningful results, our experiments have used empirical analysis based on a network of motes located at UCL, running a variety of I/O-bound, CPU-bound and mixed tasks. Using this setup, we have established that even relatively simple load sharing algorithms can improve performance over a range of different artificially generated scenarios, with more or less timely contextual information. In addition, we have taken a realistic application, based on location estimation, and implemented that across the same network with results that support the conclusions drawn from the artificially generated traffic
    corecore