1,018 research outputs found

    SCADA and related technologies

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization, II: a USCID water management conference held on June 6-9, 2007 in Denver, Colorado.Northern Water (Northern Colorado Water Conservancy District) conducted field demonstrations and comparisons of flow monitoring equipment at 18 canal and ditch sites in the lower South Platter River Basin during the 2006 irrigation season. Equipment included data loggers from 8 different manufacturers, 16 different models of water level sensors from 12 manufacturers, and 4 different types of telemetry from 7 manufacturers. The data loggers that were demonstrated included four models of single-sensor with integrated data logger, four models of programmable multi-sensor data logger, and one model of basic, low-cost data logger without telemetry. Relative equipment costs for each data logger system are summarized in Table 6. The water level sensors tested included submersible pressure transducers, optical shaft encoders, ultrasonic distance sensors, bubbler level sensor, float and pulley with potentiometer, buoyancy sensor, and a laser distance sensor. Bench checks of sensor calibrations were accomplished by Northern Water staff before field installation, and again at the end of the irrigation season. Observed sensor accuracy was compared to that expected from manufacturer specifications. The telemetry systems tested in the field included license-free spread-spectrum radios from four manufacturers, licensed radio modems in the 450 MHz range, satellite radio modems to a web server, and cdma modems with static IP addresses. Increased mast height and high gain directional antenna improved radio telemetry as expected. Additionally, operational files were utilized to document telemetry performance when available. The purpose and intent of the equipment demonstration and comparison was not to identify a single best data logger, sensor, and/or telemetry system. Each has different features and strengths, as well as varying costs. For each specific flow monitoring application, different equipment may be preferred or better suited than other equipment. However, the 2006 demonstration and comparison should provide a reference point for those seeking to become more knowledgeable in equipment selection while avoiding unpleasant surprises

    Methodology for Pumping Station Design Based on Analytic Hierarchy Process (AHP)

    Full text link
    [EN] Pumping station (PS) designs in water networks basically contemplate technical and economic aspects. Technical aspects could be related to the number of pumps in PS and the operational modes of PS. Meanwhile, economic aspects could be related to all the costs that intervene in a PS design, such as investment, operational and maintenance costs. In general, water network designs are usually focused on optimizing operational costs or investment costs, However, some subjective technical aspects have not been approached, such as determining the most suitable pump model, the most suitable number of pumps and the complexity of control system operation in a PS design. Therefore, the present work aims to select the most suitable pump model and determine the prior-ities that technical and economic factors could have in a PS design by a multi-criteria analysis, such as an analytic hierarchy process (AHP). The proposed work will contemplate two main criteria, and every criterion will be integrated by sub-criteria to design a PS. In this way, technical factors (number of pumps and complexity of the operating system) and economic factors (investment, operational and maintenance costs) will be considered for a PS design. The proposed methodology consists of realizing surveys to a different group of experts that determines the importance of one criterion over each other criterion in a PS design through pairwise comparisons. Finally, this methodology will provide importance weight for the criteria and sub-criteria on the PS. Besides, this work will perform a rating of the considered alternatives of pump models in every case study, evaluating quantitatively every alternative with every criterion in the PS design. The main objective of this work will select the most adequate pump model according to the obtained rating, considering technical and economic aspects in every case study.This research was funded by the Program Fondecyt Regular, grant number 1210410.Briceño-León, CX.; Sanchez-Ferrer, DS.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Mora-Melia, D. (2021). Methodology for Pumping Station Design Based on Analytic Hierarchy Process (AHP). Water. 13(20):1-35. https://doi.org/10.3390/w13202886S135132

    Electricity price forecasting utilizing machine learning in MIBEL

    Get PDF
    Short term electricity price forecasts have become increasingly important in the last few decades due to the rise of more competitive electricity markets throughout the globe. Accurate forecasts are now essential for market players to maximize their profits and hedge against risk, hence various forecasting methodologies have been applied to electricity price forecasting in the last few decades. This dissertation explores the main methodologies and how accurately can three popular machine learning models, SVR LSTM and XGBoost, predict prices in the Iberian market of electricity. Additionally, a study on input variables and their relationship with the final price is made
    corecore