491 research outputs found

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Get PDF
    IEEE In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation and gradient-search method. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated where the macro-cell optimal RE and the corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Green Networking in Cellular HetNets: A Unified Radio Resource Management Framework with Base Station ON/OFF Switching

    Full text link
    In this paper, the problem of energy efficiency in cellular heterogeneous networks (HetNets) is investigated using radio resource and power management combined with the base station (BS) ON/OFF switching. The objective is to minimize the total power consumption of the network while satisfying the quality of service (QoS) requirements of each connected user. We consider the case of co-existing macrocell BS, small cell BSs, and private femtocell access points (FAPs). Three different network scenarios are investigated, depending on the status of the FAPs, i.e., HetNets without FAPs, HetNets with closed FAPs, and HetNets with semi-closed FAPs. A unified framework is proposed to simultaneously allocate spectrum resources to users in an energy efficient manner and switch off redundant small cell BSs. The high complexity dual decomposition technique is employed to achieve optimal solutions for the problem. A low complexity iterative algorithm is also proposed and its performances are compared to those of the optimal technique. The particularly interesting case of semi-closed FAPs, in which the FAPs accept to serve external users, achieves the highest energy efficiency due to increased degrees of freedom. In this paper, a cooperation scheme between FAPs and mobile operator is also investigated. The incentives for FAPs, e.g., renewable energy sharing and roaming prices, enabling cooperation are discussed to be considered as a useful guideline for inter-operator agreements.Comment: 15 pages, 9 Figures, IEEE Transactions on Vehicular Technology 201

    Energy-Aware Competitive Power Allocation for Heterogeneous Networks Under QoS Constraints

    Get PDF
    This work proposes a distributed power allocation scheme for maximizing energy efficiency in the uplink of orthogonal frequency-division multiple access (OFDMA)-based heterogeneous networks (HetNets). The user equipment (UEs) in the network are modeled as rational agents that engage in a non-cooperative game where each UE allocates its available transmit power over the set of assigned subcarriers so as to maximize its individual utility (defined as the user's throughput per Watt of transmit power) subject to minimum-rate constraints. In this framework, the relevant solution concept is that of Debreu equilibrium, a generalization of Nash equilibrium which accounts for the case where an agent's set of possible actions depends on the actions of its opponents. Since the problem at hand might not be feasible, Debreu equilibria do not always exist. However, using techniques from fractional programming, we provide a characterization of equilibrial power allocation profiles when they do exist. In particular, Debreu equilibria are found to be the fixed points of a water-filling best response operator whose water level is a function of minimum rate constraints and circuit power. Moreover, we also describe a set of sufficient conditions for the existence and uniqueness of Debreu equilibria exploiting the contraction properties of the best response operator. This analysis provides the necessary tools to derive a power allocation scheme that steers the network to equilibrium in an iterative and distributed manner without the need for any centralized processing. Numerical simulations are then used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters.Comment: 37 pages, 12 figures, to appear IEEE Trans. Wireless Commu

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies
    corecore