7,786 research outputs found

    A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks

    Get PDF
    Cell Switch-Off (CSO) is recognized as a promising approach to reduce the energy consumption in next-generation cellular networks. However, CSO poses serious challenges not only from the resource allocation perspective but also from the implementation point of view. Indeed, CSO represents a difficult optimization problem due to its NP-complete nature. Moreover, there are a number of important practical limitations in the implementation of CSO schemes, such as the need for minimizing the real-time complexity and the number of on-off/off-on transitions and CSO-induced handovers. This article introduces a novel approach to CSO based on multiobjective optimization that makes use of the statistical description of the service demand (known by operators). In addition, downlink and uplink coverage criteria are included and a comparative analysis between different models to characterize intercell interference is also presented to shed light on their impact on CSO. The framework distinguishes itself from other proposals in two ways: 1) The number of on-off/off-on transitions as well as handovers are minimized, and 2) the computationally-heavy part of the algorithm is executed offline, which makes its implementation feasible. The results show that the proposed scheme achieves substantial energy savings in small cell deployments where service demand is not uniformly distributed, without compromising the Quality-of-Service (QoS) or requiring heavy real-time processing

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Base Station Switching Problem for Green Cellular Networks with Social Spider Algorithm

    Full text link
    With the recent explosion in mobile data, the energy consumption and carbon footprint of the mobile communications industry is rapidly increasing. It is critical to develop more energy-efficient systems in order to reduce the potential harmful effects to the environment. One potential strategy is to switch off some of the under-utilized base stations during off-peak hours. In this paper, we propose a binary Social Spider Algorithm to give guidelines for selecting base stations to switch off. In our implementation, we use a penalty function to formulate the problem and manage to bypass the large number of constraints in the original optimization problem. We adopt several randomly generated cellular networks for simulation and the results indicate that our algorithm can generate superior performance

    Game-theoretic infrastructure sharing in multioperator cellular networks

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of fourth-generation wireless technologies has fueled the rapid development of cellular networks, significantly increasing the energy consumption and the expenditures of mobile network operators (MNOs). In addition, network underutilization during low-traffic periods (e.g., night zone) has motivated a new business model, namely, infrastructure sharing, which allows the MNOs to have their traffic served by other MNOs in the same geographic area, thus enabling them to switch off part of their network. In this paper, we propose a novel infrastructure-sharing algorithm for multioperator environments, which enables the deactivation of underutilized base stations during low-traffic periods. Motivated by the conflicting interests of the MNOs and the necessity for effective solutions, we introduce a game-theoretic framework that enables the MNOs to individually estimate the switching-off probabilities that reduce their expected financial cost. Our approach reaches dominant strategy equilibrium, which is the strategy that minimizes the cost of each player. Finally, we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved in multioperator environments, incentivizing the MNOs to apply the proposed scheme.Peer ReviewedPostprint (author's final draft

    Fuzzy-logic framework for future dynamic cellular systems

    Get PDF
    There is a growing need to develop more robust and energy-efficient network architectures to cope with ever increasing traffic and energy demands. The aim is also to achieve energy-efficient adaptive cellular system architecture capable of delivering a high quality of service (QoS) whilst optimising energy consumption. To gain significant energy savings, new dynamic architectures will allow future systems to achieve energy saving whilst maintaining QoS at different levels of traffic demand. We consider a heterogeneous cellular system where the elements of it can adapt and change their architecture depending on the network demand. We demonstrate substantial savings of energy, especially in low-traffic periods where most mobile systems are over engineered. Energy savings are also achieved in high-traffic periods by capitalising on traffic variations in the spatial domain. We adopt a fuzzy-logic algorithm for the multi-objective decisions we face in the system, where it provides stability and the ability to handle imprecise data
    • …
    corecore